A comparative karyological study of Helianthemum (Cistaceae): karyotype size, karyotype symmetry and evolution of chromosome number





ChromEvol, comparative cytogenetics, karyotype, plant cytotaxonomy


In this study we assessed karyotype size and symmetry for a comprehensive taxonomic and geographic representation of Helianthemum and reconstructed chromosome number evolution in the genus. Using root tips, we photographed mitotic metaphase spreads to obtain chromosome number, total haploid (monoploid) length of the chromosome set (THL), karyotype formula, Stebbins’ classification of karyotype asymmetry, interchromosomal coefficient of variation of chromosome length (CVCL) and intrachromosomal mean centromeric asymmetry (MCA) using MATO (Measurement and Analysis Tools). We found that shifts in chromosome number are not a major driver in the evolution of Helianthemum, whose chromosome number evolved at a constant rate of single chromosome gain or loss. Karyotype asymmetry is very low and little variable in all taxonomic categories studied, with a predominance of metacentric and submetacentric small to medium-sized chromosomes about 3 μm at the genus level. However, total karyotype length varies from 16.91 μm to 47.84 μm at the species level, with a cytogenetic signature that is not conserved within subgenera and most sections. Overall, H. subg. Plectolobum shows both the longest and the most symmetrical karyotypes. We hypothesize that the variation in karyotype size in Helianthemum is likely a consequence of chromosome rearrangements that have occurred under selective pressures.


Download data is not yet available.


Albaladejo R.G., Martín-Hernanz S., Reyes-Betancort J.A., Santos-Guerra A., Olangua-Corral M. & Aparicio A. 2021. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. Annals of Botany 127: 597-611.

Altinordu F., Peruzzi L., Yu Y. & He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586-592.

Aparicio A. & Albaladejo R.G. 2017. On the identity of Helianthemum mathezii and H. pomeridianum (Cistaceae). Anales del Jardín Botánico de Madrid 74: e060.

Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.

Aparicio A., Martín-Hernanz S., Parejo-Farnés C., Arroyo J., Lavergne S., Yeşilyurt E.B., Zang M-L., Rubio E. & Albaladejo R.G. 2017. Phylogenetic reconstruction of the genus Helianthemum (Cistaceae) using plastid and nuclear DNA-sequences: systematic and evolutionary inferences. Taxon: 66: 868-885.

Cacho N.I., McIntyre P.J., Kliebenstein D.J. & Strauss S.Y. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany 127: 887-902.

Carta A., Bedini G. & Peruzzi L. 2018. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. Scientific Reports 8: 14258.

Dalgaard V. 1986. Chromosome studies in flowering plants from Macaronesia. Anales del Jardín Botánico de Madrid 43: 83-111.

Elliott T.L., Zedek F., Barrett R.L., Bruhl J.J., Escudero M., Hroudová Z., Joly S., Larridon I., Luceño M., Márquez-Corro J.I., Martín-Bravo S., Muasya A. M., Šmarda P., Thomas W.W., Wilson K.L. & Bureš P. 2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999-1014.

Escudero M., Martín-Bravo S., Mayrose I., Fernández-Mazuecos M., Fiz-Palacios O., Hipp AL., Pimentel M., Jiménez-Mejías P., Valcárcel V., Vargas P. & Luceño M. 2014. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploidy changes. PLoS One 9: e85266.

Glick L. & Mayrose I. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution 31: 1914-1922.

Goldblatt P. & Johnson D.E. 1979. Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Website: http://www.tropicos.org/Project/IPCN.

Greilhuber J. & Leitch I.J. 2013. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 323-344. Springer-Verlag, Vienna.

Guerra M. 2012. Cytotaxonomy: The end of childhood. Plant Biosystems 146: 703-710.

Ho L.S.T. & Ane C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397-408.

Ives A.R. & Garland T. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59: 9-26.

Levan A., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.

Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.

Lysák M.A., Berr A., Pecinka A., Schmidt R., McBreen K. & Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of North America 103: 5224-5229.

Martín-Hernanz S., Aparicio A., Fernández-Mazuecos M., Rubio E., Reyes-Betancort A., Santos-Guerra A., Olangua-Corral M. & Albaladejo R.G. 2019. Maximize resolution or minimize error? Using Genotyping-By-Sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.

Martín-Hernanz S., Velayos M., Albaladejo R.G. & Aparicio A. 2021a. Systematic implications from a robust phylogenetic reconstruction of the genus Helianthemum (Cistaceae) based on genotyping-by-sequencing (GBS) data. Anales del Jardín Botánico de Madrid 78: e113.

Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238.

Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155.

Mayrose I., Baker M.S. & Otto S. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology 59: 132-144.

Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 58: 39-48.

Pellicer J., Hidalgo O., Dodsworth S. & Leitch I.J. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.

Pérez-García F. & González-Benito M.E. 2006. Seed germination of five Helianthemum species: effect of temperature and presowing treatments. Journal of Arid Environments 65: 688-693.

Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.

Quiner Y. & Gilbert M.G. 2007. Helianthemum. In Wu Z.Y., Raven P.H. & Hong D.Y. (eds.), Flora of China, 13: 70. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis. Website: http://www.eFloras.org [last accessed Oct 2022].

Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O. & Mayrose I. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19-26.

Schubert I. & Lysák M.A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.

Snow R. 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Technology 38: 9-13.

Soltis D.E., Soltis P.S., Endress P.K. & Chase M.W. 2005. Phylogeny and evolution of Angiosperms. Sinauer Associates, Washington.

Stace C.A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.

Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.

Tjio J.H. & Levan A. 1950. The use of oxyquinoline in chromosome analysis. Anales de la Estación Experimental Aula Dei 2: 21-64.

Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.

Zhao Y-Z., Cao R. & Zhu Z-Y. 2000. A new species of Helianthemum. Acta Phytotaxonomica Sinica 38: 294-296.



How to Cite

Martín Hernanz, S., González Albaladejo, R., Rubio Pérez, E., Volkova, P., Miara, M. D., Ulukuș, D., Sezgin, M. ., & Aparicio Martínez, A. (2023). A comparative karyological study of Helianthemum (Cistaceae): karyotype size, karyotype symmetry and evolution of chromosome number. Anales Del Jardín Botánico De Madrid, 80(1), e136. https://doi.org/10.3989/ajbm.576




Funding data

Ministerio de Economía y Competitividad
Grant numbers CGL2014-52459-P, CGL2017-82465-P and PID2020-116355GB-I00

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Grant numbers 116Z446

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Grant numbers 121051100099-5