Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes

Authors

  • Vicente Marcano Laboratorio de Biología Evolutiva y de Organismos Extremos, Grupo de Ciencias Atmosféricas y el Espacio, Facultad de Ciencias, Programa de Ciencias Espaciales, Universidad de Los Andes https://orcid.org/0000-0002-0068-6642
  • Laura Castillo Estación Biológica Experimental “Vicente Marcano”, Organización Kailasha, Parque Sierra Nevada - ETSUFOR, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes https://orcid.org/0000-0001-8495-8387

DOI:

https://doi.org/10.3989/ajbm.597

Keywords:

Lichens, forest understory, Cordillera de Merida, habitat loss

Abstract


In order to quantify the risks of total and local habitats loss of the Andean lichens due to the global warming projected for the end of the century and the associated upward migration, we carried out lichenological collections in the undergrowth forest at the National Park Sierra Nevada de Merida, Venezuela. We focus on an elevation gradient from the montane forest (2100–3000 m). A total of 1200 individuals, 401 lichenological samples, 38 genera and 145 species were registered; 94 species from the low montane forest and 90 species from the high montane forest. For the purpose of demonstrating the representativeness of the sampling, performance of non-parametric estimators Chao 1 and 2, Jacknife 1 and 2 was evaluated. Assuming a projected temperature increase of 4°C by the end of the century, lichen taxa would require an upward displacement of near 725 m a.s.l for maintain its habitat. The results indicate a total of 56.86% species would be threatened of disappearing by habitat loss having an increase ≤ 0.5°C; 69.60% species will lose its habitat having thermal increase ≤ 1°C; 92.15% species will lose its habitat having thermal increase ≤ 4°C whereas 11% (endemic) species will lose its total habitat having thermal increase ≤ 1°C. Risk of massive disappearance in all the scenarios would be expected.

Downloads

Download data is not yet available.

References

Acevedo M.F., Monteleone S., Ataroff M. & Estrada C. 2001. Aberturas del dosel y espectro de luz en el sotobosque de una selva nublada andina, Venezuela. Ciencia 9: 165-183.

Acevedo M.F., Ataroff M., Monteleone S. & Estrada C. 2003. Heterogeneidad estructural y lumínica del sotobosque de una selva nublada andina, Venezuela. Interciencia 28: 394-403.

Aguirre J. & Rangel-Ch. J.O. 2007. Amenazas a la conservación de las especies de musgos y líquenes en Colombia -una aproximación inicial. Caldasia 29: 235-262.

Allen J.L. & Lendemer J.C. 2016. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555-568. https://doi.org/10.1007/s10531-016-1071-4

Armstrong R. 2013. The influence of environment on foliose lichen growth and its ecological significance. En Daniels J.A. (eds.), Advances in Environmental Research: 145-162. Nova Science, New York.

Angert L.A., Crozier L.G., Rissler L.E, Gilman S.E., Tewksbury J.J. & Chunco A.J. 2011. Do species' traits predict recent shifts at expanding range edges? Ecology Letters 14: 677-689. https://doi.org/10.1111/j.1461-0248.2011.01620.x PMid:21535340

Aptroot A. & van Herk C.M. 2002. Lichens and global warming. International Lichenological Newsletter 35: 57-58.

Aptroot A. & van Herk C.M. 2007. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293-298. https://doi.org/10.1016/j.envpol.2006.03.018 PMid:16697507

Arup U., Ekman S., Lindblom L. & Mattson J.E. 1993. High performance thin layer chromatography, HPTLC, an advised method for screening lichen substances. The Lichenologist 25: 61-71. https://doi.org/10.1006/lich.1993.1018

Ataroff M. 2003. Selvas y bosques de montaña. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela, Tomo II: 762-810. Fundación Polar-FONACIT, Editorial ExLibris, Caracas.

Ataroff M. & García-Núñez C. 2013. Selvas y bosques nublados de Venezuela. En Medina, E., Huber O., Nassar J.M. & Navarro P. (eds.), Recorriendo el paisaje vegetal de Venezuela: 125-155. Ediciones IVIC, Caracas.

Azocar A. & Fariñas M. 2003. Páramos. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela. Tomo II: 716-733. Fundación Polar-FONACIT, Editorial ExLibris, Caracas.

Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x PMid:22257223 PMCid:PMC3880584

Bjerke J.W., Lerfall K. & Elvebbakk A. 2002. Effects of ultraviolet radiation at high altitude on the physiology and the biochemistry of a terricolous lichen (Cetraria islandica L.). Symbiosis 23: 197-217.

Branquinho C., Matos P. & Pinho P. 2015. Lichens as ecological indicators to track atmospheric changes: future challenges. En Lindenmayer D., Barton P. & Pierson J. (eds.), Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, CRC Press, Melbourne.

Cáceres M.S. Lücking R. & Rambold G. 2007. Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycological Progresses 10: 190-210. https://doi.org/10.1007/s11557-007-0532-2

Canziani O.F. & Díaz S. 1998. Latin America. En Watson R.T., Zinyowera M.C., Moss R.H. & Dokken D.J. (eds.), The Regional Impacts of Climate Change: 197-230. IPCC & Cambridge University Press, Cambridge.

Cearreta A. 2017. Antropoceno. Grand Place 7: 39-51. https://doi.org/10.1542/gr.39-5-51

Ceballos G., Garcia A. & Ehrlich P.R. 2010. The sixth extinction crisis: Loss of animal populations and species. Journal of Cosmology 8: 1821-1831.

Chacón-Moreno E., Rodriguez-Morales M., Paredes D., Suarez de Moral P. & Albarrán A. 2021. Impacts of global change on the spatial dynamics of treeline in Venezuelan Andes. Frontiers in Ecology and Evolution 9: 615223. https://doi.org/10.3389/fevo.2021.615223

Chatellenaz M.L. & Ferraro L.I. 2007. Usnea y Ramalina en la construcción de nidos de Parula pitiayumi (Aves, Parulidae): ¿sostén estructural o defensa contra parásitos? Tomo 33: 49-54.

Chen I., Hill J.K, Ohlemuller R., Roy D.B. & Thomas C.D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024-1026. https://doi.org/10.1126/science.1206432 PMid:21852500

Chuquimarca L., Gaona F.P. Iñiguez-Armijos C. & Benítez A. 2019. Lichen responses to disturbance: clues for biomonitoring land-use effects on riparian Andean ecosystems. Diversity 11: 73. https://doi.org/10.3390/d11050073

Churchill S.P. 2011. Diversity of mosses in the tropical Andes. En Herzog S.K., Martinez R., Jörgensen P.M. & Tiessen H. (eds.), Climate change and biodiversity in the tropical Andes: 224-227. Inter-American Institute for Global Change Research (IAI) & Scientific Committee on Problems of the Environment (SCOPE).

Clubbe C. 1996. Threats to biodiversity. En Blackmore R. & Reddish A. (eds.). Global environmental issues. Hodder & Stoughton, London, 67-89.

Colwell R.K. & Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B 345: 101-118. https://doi.org/10.1098/rstb.1994.0091 PMid:7972351

Colwell R. 2019. EstimateS 9.1. Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User's guide and application. University of Connecticut, Storrs, Conneticut.

Cuesta-Camacho F. 2007. Efectos del cambio climático en el rango de distribución de especies en los Andes del Norte. Curso GLORIA, La Paz.

Czech B. 2008. Prospects for reconciling the conflict between economic growth and biodiversity conservation with technological progress. Conservation Biology 22: 1389-1398. https://doi.org/10.1111/j.1523-1739.2008.01089.x PMid:19076872

Dirnböck T., Dullinger S. & Grabherr G. 2003. A regional impact assessment of climate and land use change on alpine vegetation. Journal of Biogeography 30: 401-417. https://doi.org/10.1046/j.1365-2699.2003.00839.x

Edman M., Eriksson A.M. & Villard M.A. 2008. Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. Journal of Applied Ecology 45: 26-33. https://doi.org/10.1111/j.1365-2664.2007.01354.x

Ellis C.J. 2012. Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology 14: 131-152. https://doi.org/10.1016/j.ppees.2011.10.001

Ellis C.J. 2013. A risk-based model of climate change threat: hazard, exposure and vulnerability in the ecology of lichen epiphytes. Botany 91: 1-11. https://doi.org/10.1139/cjb-2012-0171

Ellis C.J. 2019. Climate change, bioclimatic models and the risk to lichen diversity. Diversity 11: 54. https://doi.org/10.3390/d11040054

Ferwerda F. 1987. The influence of potato cultivation on the natural bunchgrass paramo in the Colombian Cordillera Oriental. Informe 220, Laboratorio Hugo de Vries, Universidad de Amsterdam, Amsterdam.

Flores-García M.E., Balza-Quintero A., Benítez P. & Miranda-Contreras L. 2011. Pesticide residues in drinking water of an agricultural community in the state of Mérida, Venezuela. Revista de Investigacion Clínica 52: 295-311.

Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73-106. https://doi.org/10.1016/S0012-8252(01)00056-3

García-Mora N. 2004. Desarrollo e implementación de un sistema experto para la predicción del clima asociado a posibles escenarios ambientales en el parque Sierra Nevada de Mérida. Tesis de Maestría, Facultad de Ingeniería, Universidad de Los Andes, Mérida, Venezuela.

Green T.G.A., Sancho L.G. & Pintado A. 2011. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. En Luettge H. & al. (eds.), Plant desiccation tolerance, Ecological studies 215: 89-120. Springer, Berlín. https://doi.org/10.1007/978-3-642-19106-0_6

Gu W.D., Kuusinen M., Konttinen T. & Hanski I. 2001. Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forest. Ecography 24: 139-150. https://doi.org/10.1034/j.1600-0587.2001.240204.x

Hansell M. 2000. Bird nests and construction behaviour. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139106788

Herk C.M., Aptroot A. & van Dobben H.F. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist 34: 141-154. https://doi.org/10.1006/lich.2002.0378

Herzog S.K., Martínez R., Jörgensen P.M. & Tiessen H. (eds.) 2011. Climate change and biodiversity in the tropical Andes: 1-348. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).

Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. & Johnson C.A. 2001. Climate Change 2001: the scientific basis. Cambridge University Press, Cambridge.

Huber O. & Alarcón C. 1988. Mapa de vegetación de Venezuela. Escala 1.2.000.000. MARNR y The Nature Conservancy, Caracas.

Innes J.L. 1983. Size frequency distributions as a lichenometric technique: an assessment. Arctic an Alpine Research 15: 285-294. https://doi.org/10.2307/1550825

IPCC 2014. AR5 Synthesis report, climate change 2014. Explore. Working Group Report, finalized on 2 November 2014, IPCC, Geneva.

IPCC 2018. Global warming of 1.5°C. En Masson-Delmotte V., Zhai P., Pörtner H.-O., Roberts D., Skea J. & Shukla P.R. (eds.), An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, In the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. IPCC, Geneva.

IPCC 2022. Climate change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Mintenbeck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A. & Rama B. (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp.

Josse C., Cuesta F., Navarro G., Barrena V., Cabrera E., Chacón-Moreno E., Ferreira W., Peralvo M., Saito J. & Tovar A. 2009. Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Programa Regional ECOBONA-Intercooperation, CONDESAN Proyecto Páramo Andino, Programa BioAndes, EcoCiencia, NatureServe, IAVH, LTAUNALM, ICAE-ULA, CDC-UNALM & RUMBOL SRL, Lima.

Kalb K. & Aptroot A. 2018. New lichen species from Brazil and Venezuela. The Bryologist 121: 56-66. https://doi.org/10.1639/0007-2745-121.1.056

Kharouba H.M., McCune J.L., Thuiller W. & Huntley B. 2013. Do ecological differences between taxonomic groups influence the relationship between species' distributions and climate? A global meta-analysis using species distribution models. Ecography 36: 657-664. https://doi.org/10.1111/j.1600-0587.2012.07683.x

Kleidon A. & Lorenz R.D. (eds.) 2005. Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer, Heidelberg. https://doi.org/10.1007/b12042

Körner C. 2004. Mountain biodiversity, its causes and function. Ambio Species Reports 13: 11-17. https://doi.org/10.1007/0044-7447-33.sp13.11

Krebs C.J. 1989. Ecological methodology. New York, Cambridge, Philadelphia, San Francisco.

Lange O.L, Kilian E. & Ziegler H. 1986. Water vapor uptake and photosynthesis of lichens, performance differences in species with green and blue-green algae as phycobionts. Oecologia 71: 104-110. https://doi.org/10.1007/BF00377327 PMid:28312090

Larson B.M.H. 2018. Entropy and the conceit of biodiversity management. Global Ecology and Biogeography 27: 642-646. https://doi.org/10.1111/geb.12733

Lenoir J. & Svenning J.C. 2015. Climate-related range shifts-a global multidimensional synthesis and new research directions. Ecography 38: 15-28. https://doi.org/10.1111/ecog.00967

León V. 2015. ¿Fin del ciclo progresista? América Latina en Movimiento. Edición Digital, Agencia Latinoamericana de Información.

Llambí L.D. & Rada F. 2019. Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: past, present and future. Plant Ecology and Diversity 12: 519-538. https://doi.org/10.1080/17550874.2019.1680762

Llambí L., Melfo A., Gámez L.E., Pelayo R.C., Cárdenas M., Rojas C., Torres J., Ramírez N., Huber B. & Hernández J. 2021. Vegetation assembly, adaptive strategies and positive interactions during primary succession in the forefield of the last Venezuelan glacier. Frontiers in Ecology and Evolution 9: 657755. https://doi.org/10.3389/fevo.2021.657755

López-Figueiras M. 1986. Censo de macrolíquenes de los estados Falcón, Lara, Mérida, Táchira y Trujillo. Facultad de Farmacia, Universidad de Los Andes, Mérida, Venezuela.

Lücking R., Hodkinson B.P. & Leavitt S.D. 2016. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera. The Bryologist 119: 361-416. https://doi.org/10.1639/0007-2745-119.4.361

Ludwig J.A. & Reynolds J.F. 1988. Statistical ecology. John Wiley & Sons, New York.

Marcano V. 1994. Introduction to the study of the lichens from the Venezuelan Andes. Koeltz Scientific Books, Stuttgart.

Marcano V. 2003. Líquenes. En Aguilera M. Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela (Tomo I): 104-120. Fundación Polar-FONACIT, Editorial ExLibris, Caracas.

Marcano V. 2021a. The genus Siphula Fr. (Icmadophilaceae, Lichenized Fungi) in Venezuela. Phytotaxa 439: 10-26. https://doi.org/10.11646/phytotaxa.489.1.2

Marcano V. 2021b. Siphula paramensis V. Marcano & L. Castillo (Icmadophilaceae, Lichenized Fungi), a new species from the high paramo in Venezuela. Phytotaxa 51: 169-178. https://doi.org/10.11646/phytotaxa.512.3.4

Marcano V. 2022a. Eight new species of lichenized Basidiomycota in the genera Acantholichen, Cyphellostereum and Dictyonema (Agaricales: Hygrophoraceae) from Northern South America. Phytotaxa 574: 199-225. https://doi.org/10.11646/phytotaxa.574.3.1

Marcano V. 2022b. Evolución y destino de la vida en el Escudo de Guayana: Una historia natural basada en las contribuciones de exploradores y naturalistas desde el siglo XVII hasta la época actual. Editorial Consejo Superior de Investigaciones Científicas, Madrid.

Marcano V. & Castillo L. 2020. Diversidad de líquenes de los páramos de El Batallón y La Negra, Parque Nacional General Juan Pablo Peñaloza, Andes venezolanos. Anales del Jardín Botánico de Madrid 77: e096. https://doi.org/10.3989/ajbm.2549

Marcano V. & Castillo L. 2023. Riesgos de desaparición de líquenes por desplazamiento del hábitat en un escenario de calentamiento global en el suroeste de los Andes venezolanos. Collectanea Botanica (Barcelona) 42: e003. https://doi.org/10.3989/collectbot.2023.v42.003

Marcano V. & Castillo C. En prensa. Three new species of lichens from the Venezuelan Andes. Phytotaxa.

Marcano V. & Morales A. 1994a. El género Alectoria Ach. (Ascomicetes liquenizados) en los Andes venezolanos. Ernstia 4: 89-100.

Marcano V. & Morales A. 1994b. Revisión del género Umbilicaria (Ascomicetes Liquenizados) en Venezuela. Ernstia 4: 21-35.

Marcano V., Morales A., Mohali S., Galiz L. & Palacios-Prü E. 1995. El género Coccocarpia (Ascomicetes liquenizados) en Venezuela. Tropical Bryology 10: 215-227. https://doi.org/10.11646/bde.10.1.18

Marcano V., Morales A. & Palacios-Prü E. 2021. The genus Ramalina Ach. (Ascomycota, Lecanoromycetes, Ramalinaceae) in northern South America. Phytotaxa (Monographs) 504: 1-77. https://doi.org/10.11646/phytotaxa.504.1.1

Marcano V., Morales A., Sipman H.J.M. & Calderón L. 1996. A first checklist of the lichen forming fungi of the Venezuelan Andes. Tropical Bryology 12: 193-235. https://doi.org/10.11646/bde.12.1.19

Marcano V., Galiz L., Mohali S., Morales A. & Palacios-Prü E. 1997a. Revisión del género Leprocaulon Nyl. ex Lamy (Lichenes Imperfecti) en Venezuela. Tropical Bryology 13: 47-56. https://doi.org/10.11646/bde.13.1.6

Marcano V., Morales A., Mohali S. & Palacios-Prü E. 1997b. Morphological and chemical observations on Peltigera vainoi Gyelnik (Lichenized Ascomycetes, Peltigeraceae) from South America. Lichens 1: 1-10.

Marcano V., Balza A., García N., Navarro-González R., Mckay C., Davis W., Mendoza R. & Palacios-Prü E. 2003. Tropical Andean ecosystems as models for understanding of extrasolar and solar planetary habitats. Origins of Life and Evolution of the Biosphere 23: 502-507.

Marcano V., Balza A., García N., Navarro-González R., Mckay C., Davis W., Mendoza R. & Palacios-Prü E. 2009. Elevation effects on the nitrate and ammonium availability in the Sierra Nevada de Mérida, Venezuelan Andes. Revista de Ecología Tropical 1: 1-15.

Marcano V., Rojas A., Balza A., Díaz R. & Pérez R. 2010a. Pigmentation as a UV-screening strategy of lichenized fungi from the tropical Andes and its possible role on planetary surfaces. En Columbus F. (eds.), Photobiology: Principles, Effects and Applications: 159-178. Nova Science Publishers, New York.

Marcano V., Rojas A., Balza A., Díaz R. & Pérez R. 2010b. Pigmentation as an UV-screening strategy of lichenized fungi from the tropical Andes and its possible role on the early Earth. Ernstia 20: 21-46.

Marcano V., Navarro-Gonzales R. & McKay C. 2022. Soil temperature variation along elevation gradients in the Venezuelan Andes and definition of tree lines. ARC Special Reports 10-23-A, 1-18. NASA Ames Research Center, Moffet Field, CA.

Marcano V., Navarro-Gonzales R. & McKay C. 2023. Temperature and treeline elevation in the Sierra Nevada de Mérida of the Venezuelan Andes. Arctic, Antarctic and Alpine Research (in press).

Marengo J.A., Jones R.G., Alves L.M. & Valverde M.C. 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology 29: 1-29. https://doi.org/10.1002/joc.1863

McCarthy J.J., Canziani O.F., Leary N.A., Dokken D.J. & White K.S. 2001. Climate Change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge.

McCune B., Dey J., Peck J., Cassell D., Heiman K., Will-Wolf S. & Neitlich P. 1997. Repeatability of community data: species richness versus gradient scores in large-scale lichen studies. The Bryologist 100: 40-46. https://doi.org/10.2307/3244385

Molau U. 2004. Mountain biodiversity patterns at low and high latitudes. Ambio Species Reports 13: 24-28. https://doi.org/10.1007/0044-7447-33.sp13.24

Moncada-Cárdenas L.B. 2012. El género Sticta (Schreb.) Ach. en Colombia: Taxonomía, Ecogeografía e Importancia. Tesis Doctoral, Universidad Nacional de Colombia, Bogotá D.C.

Moncada-Cárdenas L.B., Lücking R. & Betancourt-Macuase L. 2013. Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella. The Lichenologist 45: 203-263. https://doi.org/10.1017/S0024282912000825

Moncada J.A, Pellegrini N. & Aranguren J. 2013. Los humedales altoandinos venezolanos como espacios naturales: significados para la comunidad local. Multiciencias 1: 345-354.

Monge-Nájera J. 2019. Relative humidity, temperature, substrate type, and height of terrestrial lichens in a tropical paramo. Revista de Biología Tropical 67: 206-212. https://doi.org/10.15517/rbt.v67i1.33948

Moreno C.E. 2001. Métodos para medir la biodiversidad. M&T-Manuales y Tesis SEA, vol. 1. Zaragoza.

Mostacedo B. & Fredericksen T.S. 2000. Manual de métodos básicos de muestreo y análisis en ecología vegetal. BOLFOR, Santa Cruz.

Neuwirth G. 2007. Foliicolous lichens from Venezuela with new and remarkable records. Herzogia 20: 319-326.

Neuwirth G. 2008. Further studies on lichens from Venezuela with new and interesting records. Herzogia 21: 147-156.

NYFD Assessment Partners 2019. Protecting and restoring forests: a story of large commitments yet limited progress. New York Declaration on Forests Five-Year Assessment Report. Climate focus (coordination and editor).

Orange A., James P.W. & White F.J. 2001. Microchemical Methods for the Identification of Lichens. British Lichen Society, London.

Pelletier N. 2010. Of laws and limits: an ecological economic perspective on redressing the failure of contemporary global environmental governance. Global Environm. Change 20: 220-228. https://doi.org/10.1016/j.gloenvcha.2009.12.006

Pimm S.L., Russell G.J., Gittleman J.L. & Brooks T.M. 1995. The future of biodiversity. Science 269: 347-350. https://doi.org/10.1126/science.269.5222.347 PMid:17841251

Pisani T., Paoli L., Gaggi C., Pirintsos S.A. & Loppi S. 2007. Effects of high temperature on epiphytic lichens: issues for consideration in a changing climate scenario. Plant Biosystematics 141: 164-169. https://doi.org/10.1080/11263500701401356

Porada P., Weber B., Elbert W., Pöschl U. & Kleidon A. 2013. Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10: 6989-7033. https://doi.org/10.5194/bg-10-6989-2013

Rada F., Azócar A. & Garcia C. 2019. Plant functional diversity in tropical Andean paramos. Plant Ecology and Diversity 12: 1-15. https://doi.org/10.1080/17550874.2019.1674396

Rangel-Ch. J.O. 2000. Flora y vegetación amenazada. En Rangel-Ch. J.O. (ed.). Colombia Diversidad Biótica III: La Región de vida Paramuna: 785-813. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Bogotá.

Rangel-Ch. J.O. 2004. Amenazas a la biota y a los ecosistemas del Chocó biogeográfico. En Rangel-Ch. J.O. (ed.), Colombia Diversidad Biótica IV. El Chocó biogeográfico/Costa Pacífica: 841-866. Instituto de Ciencias Naturales, Bogotá.

Richards P.W. 1996. The tropical rain forest: An Ecological Study. 2nd Edition, University Press, Cambridge.

Root T.L., Price J.T., Hall K.R, Schneider S.H., Rosenzweig C. & Pounds J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. https://doi.org/10.1038/nature01333 PMid:12511952

Rubio-Salcedo M., Psomas A., Prieto M., Zimmermann N.E. & Martínez I. 2017. Case study of the implications of climate change for lichen diversity and distributions. Biodiversity and Conservation 26: 1121-1141. https://doi.org/10.1007/s10531-016-1289-1

Ruiz D., Moreno H.A, Gutiérrez M.E. & Zapata P.A. 2008. Changing climate and endangered high mountain ecosystems in Colombia. Science of the Total Environment 398: 122-132. https://doi.org/10.1016/j.scitotenv.2008.02.038 PMid:18433837

Ruiz D., Arroyave M.P., Molina A.M., Barros J.F., Gutiérrez M.E. & Zapata P.A. 2009. Signals of climate variability/change in surface water supply of high-mountain watersheds - case study: Claro River high mountain basin, Los Nevados Natural Park, Andean Central Mountain Range, Colombia. World Bank Group, Bogota.

Rull V. 2010. El mito del desarrollo sostenible. Collectanea Botanica (Barcelona) 29: 103-109. https://doi.org/10.3989/collectbot.2010.v29.011

Rull V., Vegas-Vilarrúbia T. & Nogué S. 2005. Cambio climático y diversidad de la flora vascular en las montañas tabulares de Guayana. Orsis 20: 61-71.

Rull V., Nogué S., Safont E. & Vegas-Villarrúbia T. 2019. Pantepui and global warming. En Rull V., Vegas-Villarrúbia T., Huber O. & Señaris C. (eds.), Biodiversity in Pantepui: 403-418. Elsevier Inc., Academics Press. https://doi.org/10.1016/B978-0-12-815591-2.00017-3

Rundel P.W. 1978. The ecological role of secondary lichen substances. Biochemical Systematics and Ecology 6: 157-170. https://doi.org/10.1016/0305-1978(78)90002-9

Sarmiento G. 1986. Ecologically crucial features of climate in high tropical mountains. En Vuilleumier F. & Monasterio M. (eds.), High Altitude Tropical Biogeography: 11-45. Oxford University Press, Oxford.

Schlesinger W.H. 2000. Biogeoquímica. Editorial Ariel, Barcelona.

Sipman H.J.M. 1995. Preliminary review of the lichen biodiversity of the Colombian montane forests. En Churchill S.P. (ed.), Biodiversity and conservation of Neotropical montane forests: 313-320. The New York Botanical Garden, New York.

Sipman H.J.M. 2011. Diversity of lichenized fungi in the tropical Andes. En Herzog S.K., Martínez R., Jörgensen P.M. & Tiessen H. (eds.), Climate change and biodiversity in the tropical Andes: 220-223. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).

Sipman H.J.M. 2012. The significance of the Northern Andes for lichens. The Botanical Review 68: 88-89. https://doi.org/10.1663/0006-8101(2002)068[0088:TSOTNA]2.0.CO;2

Sipman H.J.M. & Harris R.C. 1989. Lichens. En Lieth, H. & Werger, M.J.A. (eds.), Tropical rain forest ecosystems. Elsevier Science, Amsterdam, 303-309. https://doi.org/10.1016/B978-0-444-42755-7.50021-3

Sipman H.J.M. & Topham P. 1992. The genus Umbilicaria (Lichenized Ascomycetes) in Colombia. Nova Hedwigia 54: 63-75.

Sipman H.J.M., Hekking W. & Aguirre J. 2008. Checklist of lichenized and lichenicolous fungi from Colombia. (Biblioteca José Jerónimo Triana, 20). Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá.

Smith J.K., Cartaya V., Llambí L.D. & Toro J. 2014. Análisis participativo del uso de la tierra y la calidad de vida en dos páramos de Venezuela: importancia para el diseño de estrategias de conservación. En Cuesta F., Sevink J., Llambí L.D., De Bievre B. & Posner J. (eds.), Avances en Investigación para la Conservación en los Páramos Andinos: 399-420. Proyecto Páramo Andino CONDESAN, Quito.

Soto-Medina E., Lücking R. & Bolaños-Rojas A. 2012. Especificidad de forófito y preferencias microambientales de los líquenes cortícolas en cinco forófitos del bosque premontano de finca Zingara, Cali, Colombia. Revista de Biología Tropical 60: 843-856. https://doi.org/10.15517/rbt.v60i2.4017

Soto-Medina E., Prieto M. & Wedin M. 2018. A new Bunodophoron species (Sphaerophoraceae, Lecanorales) from the Neotropics. The Lichenologist 50: 255-266. https://doi.org/10.1017/S0024282917000743

Stocker T.F, Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P.M. 2013. Climate change 2013: The Physical Science Basis. Contribution of working group I to the Fifth Asessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Summers D.M., Bryan B.A., Crossman N.D. & Meyer W.S. 2012. Species vulnerability to climate change, impacts on spatial conservation priorities and species representation. Global Change and Biology 18: 1365-2486. https://doi.org/10.1111/j.1365-2486.2012.02771.x

Thomas C.D., Cameron A. & Green R.E. 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121 PMid:14712274

Trischler H. 2007. El antropoceno, ¿un concepto geológico o cultural, o ambos? Desacatos 54: 40-57. https://doi.org/10.29340/54.1739

Urrutia R. & Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114: D02108. https://doi.org/10.1029/2008JD011021

Vareschi V. 1973. Resultados liquenológicos de excursiones efectuadas en Venezuela. Núm. 3. Catálogo de los líquenes de Venezuela. Acta Botánica Venezuelica 8: 177-245.

Vareschi V. 1986. Cinco breves ensayos ecológicos acerca de la selva virgen de Rancho Grande. En Huber O. (ed.), La Selva Nublada de Rancho Grande. Acta Científica Venezolana: 171-187. Caracas.

Vareschi V. 1992. Ecología de la vegetación tropical. Edición Especial de la Sociedad Venezolana de Ciencias Naturales, Caracas.

Veillon J.P. 1989. Los bosques naturales de Venezuela. Parte I. El Medio Ambiente. Oscar Todmann Editores, Caracas.

Vries B.G. de & Sipman H.J.M. 1984. Studies on Colombian cryptogams XXI. The lichen genus Baeomyces in Colombia and Venezuela. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen C, 87: 235-246.

Vuille M. & Bradley R.S. 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters 27: 3885-3888. https://doi.org/10.1029/2000GL011871

Walther B.A. & Morand S. 1998. Comparative performance of species richness estimation methods. Parasitology 11: 395-405. https://doi.org/10.1017/S0031182097002230 PMid:9585941

White F.J. & James P.W. 1985. A new guide to microchemical techniques for the identification of lichen substances. British Lichen Society Bulletin 57 (Suppl.): 1-41.

Wolf J.H.D. 1993a. Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. Tesis de Grado, Universidad of Amsterdam, Amsterdam.

Wolf J.H.D. 1993b. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80: 923-960. https://doi.org/10.2307/2399938

Woodruff D.S. 2001. Declines of biomes and biotas and the future of evolution. Proceedings of the National Academy of Sciences 98: 5471-5476. https://doi.org/10.1073/pnas.101093798 PMid:11344296 PMCid:PMC33236

Published

2023-12-30

How to Cite

Marcano, V., & Castillo, L. (2023). Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes. Anales Del Jardín Botánico De Madrid, 80(2), e143. https://doi.org/10.3989/ajbm.597

Issue

Section

Articles