Variación en el tamaño del genoma e incidencia de la poliploidía en la flora alpina española
DOI:
https://doi.org/10.3989/ajbm.2350Palabras clave:
contenido nuclear de ADN, nivel de ploidía, Picos de Europa, Sierra Nevada, vegetación alpinaResumen
El interés en el estudio de la evolución del genoma, especialmente de la variación en tamaño y de la incidencia de poliploidía, se ha incrementado en los últimos años. Sin embargo, sólo unos pocos estudios se han centrado en el nivel de comunidades. Las especies de alta montaña son especialmente interesantes debido a la alta frecuencia de especies endémicas y a que son consideradas muy susceptibles a la extinción por los efectos del cambio climático. En el presente estudio, exploramos la variación en el tamaño genómico y la incidencia de poliploidía en las comunidades de plantas entomófilas de alta montaña de dos macizos montañosos: el Parque Nacional de Sierra Nevada y el Parque Nacional de Picos de Europa. Para ello, se evaluó el número de cromosomas y el nivel de ploidía por medio de una revisión bibliográfica, mientras que el tamaño genómico y la incidencia de poliploidía se estimaron en 39 taxones de varios géneros usando citometría de flujo. En este estudio, se proporcionan las primeras estimaciones del tamaño genómico para 32 taxones. La mayoría de los taxones analizados presentaron tamaños genómicos pequeños o muy pequeños (2C ≤ 7.0 pg), sin mostrar diferencias en el tamaño genómico asociadas a su origen geográfico o rango de distribución. Se observó una baja incidencia de taxones poliploides (23.3%), siendo éstos más comunes entre las plantas de Picos de Europa que entre las de Sierra Nevada. La mayor parte de los taxones considerados como poliploides fueron plantas restringidas a las montañas, sin embargo no se observó un patrón claro entre la incidencia de poliploidía y el grado de endemismo. Los resultados obtenidos son discutidos dentro del contexto de variación en el tamaño del genoma y de la incidencia de poliploidía en las floras árticas y alpinas, contribuyendo al conocimiento científico de estas comunidades naturales de gran importancia biológica.
Descargas
Citas
Abbott, R.J. & Brochmann, C. 2003. History and evolution of the arctic flora: in the footsteps of Eric Hulten. Molecular Ecology 12: 299-313. http://dx.doi.org/10.1046/j.1365-294X.2003.01731.x PMid:12535083
Adams, K.L. & Wendel, J.F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8: 135-141. http://dx.doi.org/10.1016/j.pbi.2005.01.001 PMid:15752992
Aedo, C. & Castroviejo, S. 2005. Anthos. Sistema de información sobre las plantas de Espa-a. http://www.anthos.es/ (10 August 2011).
Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437. http://dx.doi.org/10.1111/j.1469-8137.2006.01919.x PMid:17204088
Bennett, M.D. & Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 274: 227-274. http://dx.doi.org/10.1098/rstb.1976.0044
Bennett, M.D. & Leitch, I.J. 2005. Nuclear DNA amounts in angiosperms: Progress, problems and prospects. Annals of Botany 95: 45-90. http://dx.doi.org/10.1093/aob/mci003 PMid:15596457
Bennett, M.D. & Leitch, I.J. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590. http://dx.doi.org/10.1093/aob/mcq258 PMid:21257716 PMCid:PMC3043933
Bennett, M.D. & Leitch, I.J. 2012. Angiosperm DNA C-values Database (Release 6.0, Dec. 2012). http://www.kew.org/cvalues/
Blanca, G., Cabezudo, B., Cueto, M., Salazar, C. & Morales Torres, C. 2001. Flora Vascular de Andalucía Oriental. 2a Edición corregida y aumentada. Edn. Universidades de Almería, Granada, Jaén y Málaga.
Borgen, L. 1974. Chromosome numbers of Macaronesian flowering plants II. Norwegian Journal of Botany 21: 195-210.
Boscaiu, M., Vicente, O. & Ehrendorfer, F. 1999. Chromosome numbers, karyotypes and nuclear DNA contents from perennial polyploid groups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution 218: 13-21. http://dx.doi.org/10.1007/BF01087030
Brochmann, C., Brysting, A.K., Alsos, I.G., Borgen, L., Grundt, H.H., Scheen, A.C. & Elven, R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521-536. http://dx.doi.org/10.1111/j.1095-8312.2004.00337.x
Castro, S., Loureiro, J., Prochazka, T. & Munzbergova, Z. 2012. Cytotype distribution at a diploidhexaploid contact zone in Aster amellus (Asteraceae). Annals of Botany 110: 1047-1055. http://dx.doi.org/10.1093/aob/mcs177 PMid:22887024
Castroviejo, S. & al. 1986-2012. Flora iberica 1-8, 10-15, 17-18, 21. Real Jardín Botánico, CSIC, Madrid. Cires, E., Cuesta, C., Peredo, E.L., Revilla, M.A. & Prieto, J.A.F. 2009. Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Systematics and Evolution 281: 193-208.
Cires, E., Cuesta, C., Casado, M.A.F., Nava, H.S., Vázquez, V.M. & Prieto, J.A.F. 2011. Isolation of plant nuclei suitable for flow cytometry from species with extremely mucilaginous compounds: an example in the genus Viola L. (Violaceae). Anales del Jardin Botánico de Madrid 68: 139-154. http://dx.doi.org/10.3989/ajbm.2273
Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846. http://dx.doi.org/10.1038/nrg1711 PMid:16304599
Doležel, J., Sgorbati, S. & Lucretti, S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625-631. http://dx.doi.org/10.1111/j.1399-3054.1992.tb04764.x
Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M.A., Nardi, L. & Obermayer, R. 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals Botany 82: 17-26. http://dx.doi.org/10.1006/anbo.1998.0730
Fawcett, J.A. & Van de Peer, Y. 2010. Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology 2010 1:e3: 16-21.
Feliner, G.N. 2011. Southern European glacial refugia: A tale of tales. Taxon 60: 365-372.
Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P. & Firoozabady, E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. http://dx.doi.org/10.1126/science.220.4601.1049 PMid:17754551
García-Fernández, A., Iriondo, J.M., Vallès, J., Orellana, J. & Escudero, A. 2012. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Systematics and Evolution 298: 139-146. http://dx.doi.org/10.1007/s00606-011-0530-3
Garnatje, T., Garcia, S., Vilatersana, R. & Vallès, J. 2006. Genome size variation in the genus Carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Annals of Botany 97: 461-467. http://dx.doi.org/10.1093/aob/mcj050 PMid:16390843 PMCid:PMC2803645
Garnatje, T., Canela, M.A., Garcia, S., Hidalgo, O., Pellicer, J., Sánchez-Jiménez, I., Siljak-Yakovlev, S., Vitales, D. & Vallès, J. 2010. GSAD: a genome size database in the Asteraceae. Release 1.0, July (http://www.asteraceaegenomesize.com, database environment by Gálvez F.).
Goldblatt, P. & Johnson, D.E. 1976. Index to plant chromosome numbers. In: P. Goldblatt & D.E. Johnson. Missouri Botanical Garden, St. Louis. PMCid:PMC430372
Grant, V. (1981) Plant speciation. Columbia University Press, Columbia.
Greilhuber, J. & Leitch, I. 2013. Genome Size and the Phenotype. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_20
Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. 2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Annals of Botany 95: 255-260. http://dx.doi.org/10.1093/aob/mci019 PMid:15596473
Greilhuber, J., Borsch, T., Muller, K., Worberg, A., Porembski, S. & Barthlott, W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777. http://dx.doi.org/10.1055/s-2006-924101 PMid:17203433
Grime, J.P. & Mowforth, M.A. 1982. Variation in genome size an ecological interpretation. Nature 299: 151-153. http://dx.doi.org/10.1038/299151a0
Hegarty, M.J. & Hiscock, S.J. 2008. Genomic clues to the evolutionary success of review polyploid plants. Current Biology 18: R435-R444. http://dx.doi.org/10.1016/j.cub.2008.03.043 PMid:18492478
Hodgson, J.G. 1987. Why do so few plant species exploit productive habitats? An investigation into cytology, plant strategies and abundance within a local flora. Functional Ecology 1: 243-250. http://dx.doi.org/10.2307/2389427
Knight, C.A. & Ackerly, D.D. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66-76. http://dx.doi.org/10.1046/j.1461-0248.2002.00283.x
Knight, C.A. & Beaulieu, J.M. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759-766. http://dx.doi.org/10.1093/aob/mcm321 PMid:18222911 PMCid:PMC2710210
Küpfer, P. 1974. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera 23: 113-131.
Larena, B.G., Aguilar, J.F. & Feliner, G.N. 2002. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Molecular Ecology 11: 1965-1974. http://dx.doi.org/10.1046/j.1365-294X.2002.01594.x
Leitch, I. & Leitch, A.R. 2013. Genome Size Diversity and Evolution in Land Plants. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_19
Leitch, I.J., Soltis, D.E., Soltis, P.S. & Bennett, M.D. 2005. Evolution of DNA amounts across land plants (embryophyta). Annals of Botany 95: 207-217. http://dx.doi.org/10.1093/aob/mci014 PMid:15596468
Lexer, C. & van Loo, M. 2006. Contact zones: Natural labs for studying evolutionary transitions. Current Biology 16: R407-R409. http://dx.doi.org/10.1016/j.cub.2006.05.007 PMid:16753551
Lim, K.Y., Souckova-Skalicka, K., Sarasan, V., Clarkson, J.J., Chase, M.W., Kovarik, A. & Leitch, A.R. 2006. A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. American Journal of Botany 93: 875-883. http://dx.doi.org/10.3732/ajb.93.6.875 PMid:21642150
Loureiro, J., Rodriguez Rodríguez, E., Doležel, J. & Santos, C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany 100: 875-888. http://dx.doi.org/10.1093/aob/mcm152 PMid:17684025 PMCid:PMC2749623
Loureiro, J., Doležel, J., Greilhuber, J., Santos, C. & Suda, J. 2008. Plant flow cytometry - Far beyond the stone age. Cytometry Part A 73: 579-580. http://dx.doi.org/10.1002/cyto.a.20578 PMid:18553508
Löve, A. & Löve, D. 1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica Series A: 273-352.
Löve, A. & Löve, D. 1967. Polyploidy and altitude: Mt. Washington. Biologisches Zentralblatt Suppl. Vol.: 307-312.
Lysak, M.A., Koch, M.A., Beaulieu, J.M., Meister, A. & Leitch, I.J. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution 26: 85-98. http://dx.doi.org/10.1093/molbev/msn223 PMid:18842687
Ma, J.X., SanMiguel, P., Lai, J.S., Messing, J. & Bennetzen, J.L. 2005. DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209-1220. http://dx.doi.org/10.1534/genetics.105.040915 PMid:15834137 PMCid:PMC1451190
Marie, D. & Brown, S.C. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41-51. http://dx.doi.org/10.1016/0248-4900(93)90113-S
Mateo Sanz, M. 1996. Sobre el endemismo cantábrico Hieracium lainzii de Retz (Compositae) y especies afines. Anales del Jardin Botanico de Madrid 54: 364-369.
Morton, J.K. 1993. Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Botanica 121: 159-172.
Nie, Z.L., Wen, J., Gu, Z.J., Boufford, D.E. & Sun, H. 2005. Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Annals of the Missouri Botanical Garden 92: 275-306.
Pellicer, J., Fay, M.F. & Leitch, I.J. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10-15. http://dx.doi.org/10.1111/j.1095-8339.2010.01072.x
Petit, C. & Thompson, J.D. 1999. Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evolutionary Ecology 13: 45-66. http://dx.doi.org/10.1023/A:1006534130327
Quinn, G.P. & Keough, M.J. 2002 Experimental design and data analysis for Biologists. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511806384
Santamaría, S., Gutiérrez, D., García-Camanho, R., Giménez-Benavides, L., Méndez, M., Milla, R., Teixido, A.L. & Torices, R. 2011a. Mariposas diurnas que visitan flores en el Jou de Los Cabrones (Parque Nacional de los Picos de Europa). Boletín de la Sociedad Entomológica Aragonesa 48.
Santamaría, S., Castro, L., García-Camanho, R., Giménez-Benavides, L., Méndez, M., Milla, R., Teixido, A.L. & Torices, R. 2011b. Abejorros (Bombus spp.: Hymenoptera, Apidae) del Jou de Los Cabrones (Parque Nacional de los Picos de Europa) y confirmación de la presencia de Bombus mendax Gerstaecker, 1869 en la Cordillera Cantábrica (Espa-a). Boletín de la Sociedad Entomológica Aragonesa 48: 143-146.
Stebbins, G.L. 1984. Polyploidy and the distribution of the Arctic-Alpine flora - New evidence and a new approach. Botanica Helvetica 94: 1-13.
Suda, J., Kyncl, T. & Freiova, R. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany 92: 153-164. http://dx.doi.org/10.1093/aob/mcg104 PMid:12824074
Suda, J., Kyncl, T. & Jarolimova, V. 2005. Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Systematics and Evolution 252: 215-238. http://dx.doi.org/10.1007/s00606-004-0280-6
Suda, J., Krahulcova, A., Travnicek, P. & Krahulec, F. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55: 447-450. http://dx.doi.org/10.2307/25065591
Suda, J., Kron, P., Husband, B.C. & Travnicek, P.2007. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: J. Dolezel, J. Greilhuber & J. Suda (eds), Flow cytometry with plant cells pp. 103-130. Wiley-VCH, Weinheim. http://dx.doi.org/10.1002/9783527610921.ch5 PMid:17182545
Swigonova, Z., Bennetzen, J.L. & Messing, J. 2005. Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169: 891-906. http://dx.doi.org/10.1534/genetics.104.034629 PMid:15489523 PMCid:PMC1449108
Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T. & Prentice, I.C. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102: 8245-8250. http://dx.doi.org/10.1073/pnas.0409902102 PMid:15919825 PMCid:PMC1140480
Vamosi, J.C. & McEwen, J. 2012. Origin, elevation, and evolutionary success of hybrids and polyploids in British Columbia, Canada. Botany in press
Vargas, P. 2003. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52: 463-476. http://dx.doi.org/10.2307/3647446
Vitte, C. & Bennetzen, J.L. 2006. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Sciences of the United States of America 103: 17638-17643. http://dx.doi.org/10.1073/pnas.0605618103 PMid:17101966 PMCid:PMC1693799
Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B. & Rieseberg, L.H. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America 106: 13875-13879. http://dx.doi.org/10.1073/pnas.0811575106 PMid:19667210 PMCid:PMC2728988
Zonneveld, B.J.M. 2001. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Systematics and Evolution 229: 125-130. http://dx.doi.org/10.1007/s006060170022
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.