Evaluación del sistema reproductivo del endemismo costero Argelino Anacyclus linearilobus (Anthemideae, Asteraceae)

Autores/as

DOI:

https://doi.org/10.3989/ajbm.542

Palabras clave:

Aseguramiento reproductivo, auto-fertilización, Compuestas, Mediterráneo occidental, sistema de cruzamiento mixto

Resumen


Se evaluó el sistema de cruzamiento de Anacyclus linearilobus, una especie anual y endémica, de reducida distribución en ecosistemas dunares de la costa argelina, mediante la probabilidad de producir semillas en 20 individuos de dos poblaciones, cultivadas en jardín. El sistema de reproducción se determinó para cada individuo por el índice de autoincompatibilidad (ISI). Estos resultados se compararon con los publicados para otras especies del género, A. clavatusA. homogamos y A. valentinus. Los resultados de los cruces experimentales mostraron que hubo una gran variación en el éxito reproductivo femenino entre individuos de A. linearilobus, como la encontrada en su especie hermana, A. valentinus. A diferencia de las otras especies del género que son autoincompatibles, A. linearilobus mostró un sistema de cruzamiento mixto, con una mayoría de individuos autoincompatibles, otros parcialmente autoincompatibles y algunos autocompatibles. Argumentamos que esta estrategia puede estar relacionada con el aseguramiento reproductivo en esta especie anual endémica cuyo tamaño efectivo de población se ha reducido probablemente debido a incompatibilidad entre individuos emparentados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agudo A.B., Torices R., Loureiro J., Castro S., Castro M. & Álvarez I. 2019. Genome size variation in a hybridizing diploid species complex in Anacyclus (Asteraceae: Anthemideae). International Journal of Plant Sciences 180: 374-385. https://doi.org/10.1086/703127

Alonso C., Vamosi J.C., Knight T.M., Steets J.A. & Ashman T.L. 2010. Is reproduction of endemic plant species particularly pollen limited in biodiversity hotspots? Oikos 119: 1192-1200. https://doi.org/10.1111/j.1600-0706.2009.18026.x

Álvarez I. 2019. Anacyclus L. In Benedí C., Buira A., Rico E., Crespo M.B., Quintanar A., Aedo C. (eds.), Flora iberica vol. 16(3), Compositae (partim). Real Jardín Botánico-CSIC, Madrid.

Álvarez I., Agudo A.B., Herrero A. & Torices R. 2020. The Mendelian inheritance of gynomonoecy: insights from Anacyclus hybridizing species. American Journal of Botany 107: 116-125. https://doi.org/10.1002/ajb2.1414 PMid:31903550

Angeloni F., Ouborg N.J. & Leimu R. 2011. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biological Conservation 144: 35-43. https://doi.org/10.1016/j.biocon.2010.08.016

Arista M., Berjano R., Viruel J., Ortiz M.A., Talavera M., Ortiz P.L. 2017. Uncertain pollination environment promotes the evolution of a stable mixed reproductive system in the self-incompatible Hypochaeris salzmanniana (Asteraceae). Annals of Botany 120: 447-456. https://doi.org/10.1093/aob/mcx059 PMid:28911017 PMCid:PMC5591423

Barrett S.C.H. 2014. Evolution of mating systems: outcrossing versus selfing. In Losos J.B. (ed.), The Princeton Guide to Evolution. Princeton University Press, Princeton.

Barrett S.C.H. & Harder L.D. 2017. The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution and Systematics 48: 135-157. https://doi.org/10.1146/annurev-ecolsys-110316-023021

Bates D., Mächler M., Bolker B.M. & Walker S. 2015. Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software 67: 1-48. https://doi.org/10.18637/jss.v067.i01

Bateson W. 1909. Heredity and variation in modern lights. In Seward A.C. (ed.), Darwin and modern science. Cambridge University Press, Cambridge.

Boissier P.E. & Reuter G.F. 1852. Pugillus Plantarum Novarum Africae Borealis Hispaniaeque Australis. Ferd. Ramboz et socii, Geneva.

Busch J.W. & Delph L.F. 2012. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany 109: 553-562. https://doi.org/10.1093/aob/mcr219 PMid:21937484 PMCid:PMC3278291

Busch J.W. & Schoen D.J. 2008. The evolution of self-incompatibility when mates are limiting. Trends in Plant Science 13: 128-136. https://doi.org/10.1016/j.tplants.2008.01.002 PMid:18296103

Byers D.L. & Waller D.M. 1999. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annual Review of Ecology and Systematics 30: 479-513. https://doi.org/10.1146/annurev.ecolsys.30.1.479

Charlesworth D. & Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology, Evolution and Systematics 18: 237-268. https://doi.org/10.1146/annurev.es.18.110187.001321

Crawford D.J., Moura M., Borges Silva L., Mort M.E., Kerbs B., Schaefer H. & Kelly J.K. 2019. The transition to selfing in Azorean Tolpis (Asteraceae). Plant Systematics and Evolution 305: 305-317. https://doi.org/10.1007/s00606-019-01573-7

Dobzhansky T. 1936. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21: 113-135. https://doi.org/10.1093/genetics/21.2.113 PMid:17246786 PMCid:PMC1208664

Ferrer M. & Good-Avila S. 2007. Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologist 173: 401-14. https://doi.org/10.1111/j.1469-8137.2006.01905.x PMid:17204086

Goldberg E.E., Kohn J.R., Lande R., Robertson K.A., Smith S.A. & Igić B. 2010. Species selection maintains self-incompatibility. Science 330: 493-495. https://doi.org/10.1126/science.1194513 PMid:20966249

Good-Avila S.V., Mena-Alí J.I. & Stephenson A.G. 2008. Evolutionary consequences of variations in self-fertility in self-incompatible species. In Franklin-Tong E. (ed.), Self-incompatibility in flowering plants-evolution, diversity, and mechanisms. Springer, Berlin. https://doi.org/10.1007/978-3-540-68486-2_2

Goodwillie C., Kalisz S. & Eckert C.G. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution and Systematics 36: 47-79. https://doi.org/10.1146/annurev.ecolsys.36.091704.175539

Grossenbacher D.L., Brandvain Y., Auld J.R., Burd M., Cheptou P.-O., Conner J.K., Grant A.G., Hovick S.M., Pannell J.R., Pauw A., Petanidou T., Randle A.M., Rubio de Casas R., Vamosi J., Winn A., Igic B., Busch J.W., Kalisz S. & Goldberg E.E. 2017. Self-compatibility is over-represented on islands. New Phytologist 215: 469-478. https://doi.org/10.1111/nph.14534 PMid:28382619

Humphries C.J. 1979. A revision of the genus Anacyclus L. (Compositae: Anthemideae). Bulletin of the British Museum (Natural History) Botany 7: 83-142.

Humphries C.J. 1981. Cytogenetic and cladistic studies in Anacyclus (Compositae: Anthemideae). Nordic Journal of Botany 1: 83-96. https://doi.org/10.1111/j.1756-1051.1981.tb01038.x

Igić B., Lande R. & Kohn J.R. 2008. Loss of self-incompatibility and its evolutionary consequences. International Journal of Plant Sciences 169: 93-104. https://doi.org/10.1086/523362

Kerbs B., Crawford D.J., White G., Moura M., Borges Silva L., Schaefer H., Brown K., Mort M.E. & Kelly J.K. 2020. How rapidly do self-compatible populations evolve selfing? Mating system estimation within recently evolved self-compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecology and Evolution 10: 13990-13999. https://doi.org/10.1002/ece3.6992 PMid:33391697 PMCid:PMC7771160

Leins P. & Erbar C. 2006. Secondary pollen presentation syndromes of the Asterales-a phylogenetic perspective. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 127: 83-103. https://doi.org/10.1127/0006-8152/2006/0127-0083

Levin D.A. 2003. The cytoplasmic factor in plant speciation. Systematic Botany 28: 5-11.

Lloyd D.G. 1992. Self- and cross-fertilization in plants II. The selection of self-fertilization. International Journal of Plant Sciences 153: 370-380. https://doi.org/10.1086/297041

Muller H.J. 1942. Isolating mechanisms, evolution, and temperature. Biology Symposium 6: 71-125.

Oberprieler C. 2004. On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae-Anthemideae I. Brocchia, Endopappus and Heliocauta. Willdenowia 34: 39-57. https://doi.org/10.3372/wi.34.34102

Patterson H.D. & Thompson R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. https://doi.org/10.1093/biomet/58.3.545

Pérez M.E., Meléndez-Ackerman E.J. & Monsegur-Rivera O.A. 2018. Breeding system and pollination of Gesneria pauciflora (Gesneriaceae), a threatened Caribbean species. Flora 242: 8-15. https://doi.org/10.1016/j.flora.2018.02.009

Raduski A.R., Haney E.B., Igić B. 2012. The expression of self-incompatibility in angiosperms is bimodal. Evolution 66: 1275-1283. https://doi.org/10.1111/j.1558-5646.2011.01505.x PMid:22486704

Rosato M., Álvarez I., Nieto Feliner G. & Rosselló J.A. 2017. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS One 12: e0187131. https://doi.org/10.1371/journal.pone.0187131 PMid:29088249 PMCid:PMC5663423

Shivanna K.R. 2014. Reproductive assurance through autogamy in some annual weed species. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84: 681-687. https://doi.org/10.1007/s40011-014-0307-x

Shivanna K.R. 2015. Reproductive assurance through autogamous self-pollination across diverse sexual and breeding systems. Current Science 109: 1255-1263. https://doi.org/10.18520/cs/v109/i7/1255-1263

Snoussi M. & Aoul E.H.T. 2000. Integrated coastal zone management programme northwest African region case. Ocean & Coastal Management 43: 1033-1045. https://doi.org/10.1016/S0964-5691(00)00071-5

Stebbins G.L. 1974. Flowering plants. Evolution above the species level. Belknap Press, Cambridge. https://doi.org/10.4159/harvard.9780674864856 PMCid:PMC301458

Torices R., Agudo A. & Álvarez I. 2013. Not only size matters: achene morphology affects time of seedling emergence in three heterocarpic species of Anacyclus (Anthemideae, Asteraceae). Anales del Jardín Botánico de Madrid 70: 48-55. https://doi.org/10.3989/ajbm.2351

Vitales D., Nieto Feliner G., Vallès J., Garnatje T., Firat M. & Álvarez I. 2018. A new circumscription of the Mediterranean Anacyclus (Anthemideae, Asteraceae) based on plastid and nuclear DNA markers. Phytotaxa 349: 1-17. https://doi.org/10.11646/phytotaxa.349.1.1

Vitales D., Álvarez I., Garcia S., Hidalgo O., Nieto Feliner G., Pellicer J., Vallès J. & Garnatje T. 2020. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Annals of Botany 125: 611-623. https://doi.org/10.1093/aob/mcz183 PMid:31697800 PMCid:PMC7103019

Yates C.J. & Ladd P.G. 2004. Breeding system, pollination and demography in the rare granite endemic shrub Verticordia staminosa ssp. staminosa in south-west Western Australia. Austral Ecology 29: 189-200. https://doi.org/10.1111/j.1442-9993.2004.01336.x

Zuur A.F., Leno E.N. & Elphick C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

Publicado

2023-03-16

Cómo citar

Sánchez-Albert, A., Torices, R., Kaid-Harche, M., & Álvarez, I. (2023). Evaluación del sistema reproductivo del endemismo costero Argelino Anacyclus linearilobus (Anthemideae, Asteraceae). Anales Del Jardín Botánico De Madrid, 79(2), e131. https://doi.org/10.3989/ajbm.542

Número

Sección

Artículos

Datos de los fondos

European Regional Development Fund
Números de la subvención CGL2010-18039;CGL2013-49097-C2-1-P

Ministerio de Ciencia e Innovación
Números de la subvención CGL2010-18039

Ministerio de Economía y Competitividad
Números de la subvención CGL2013-49097-C2-1-P