Relaciones citogenéticas en el clado magrebí de Festuca subgen. Schedonorus (Poaceae), mediante la utilización de citometría de flujo y FISH

Autores/as

DOI:

https://doi.org/10.3989/ajbm.2455

Palabras clave:

Festuca subgen. Schedonorus, festucas de hoja ancha, FISH, tamaño genómico, rADN

Resumen


Festuca subgen. Schedonorus es un grupo de Festucas de hojas anchas que se divide tradicionalmente en dos clados, uno europeo y otro magrebí. Mediante hibridación in situ fluorescente —FISH— con sondas específicas para las regiones ribosómicas 5S y 35S en su cariotipo y estimaciones de tamaño genómico mediante citometría de flujo se intentó determinar los posibles genomas parentales de las especies poliploides del clado magrebí. Nuestros datos indican que la especie octoploide F. arundinacea subsp. atlantigena probablemente se originó a partir del cruce de los tetraploides F. arundinacea subsp. fenas —2n = 4x = 28— y F. mairei —2n = 4x = 28— seguido de la duplicación del genoma. Sin embargo, también se ha detectado una reconstrucción del cariotipo y una reducción del tamaño genómico. De forma similar la especie hexaploide F. arundinacea subsp. corsica parece ser un híbrido entre el diploide F. pratensis y el tetraploide F. arundinacea subsp. fenas. Se discuten diversas posibilidades sobre el origen del decaploide F. arundinacea var. letournexiana. Este trabajo contribuye a conocer mejor la filogenia de las Festucas de hoja ancha y proporciona nueva información sobre los cariotipos de estas especies —números cromosomáticos, niveles de ploidía y número y posición de loci de rDNA— mediante FISH y la estima de sus tamaños genómicos mediante citometría de flujo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Borrill, M. 1972. Studies in Festuca III. The contribution of F. scariosa to the evolution of polyploids in sections Bovinae and Scariosae. New Phytologist 71: 523-532. https://doi.org/10.1111/j.1469-8137.1972.tb01953.x

Borrill, M., Kirby, M. & Morgan, W.G. 1977. Studies in Festuca 11. Interrelationships of some putative diploid ancestors of the polyploid broad-leaved fescues. New Phytologist 78: 661-674. https://doi.org/10.1111/j.1469-8137.1977.tb02171.x

Catalán, P., Torrecilla, P., Rodríguez, J.A.L. & Olmstead, R.G. 2004. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Molecular Phylogenetics and Evolution 31: 517-541. https://doi.org/10.1016/j.ympev.2003.08.025 PMid:15062792

Catalán, P. 2006. Phylogeny and evolution of Festuca L. and related genera of subtribe Loliinae (Poeae, Poaceae). In: Sharma, A.K. & Sharma, A. (eds.), Plant Genome. Biodiversity and Evolution. Pp. 255- 303. Enfield: Science Publishers.

Chandrasekharan, P. & Thomas, H. 1971. Studies in Festuca. V. Cytogenetic relationships between species of Bovinae and Scariosae. Zeitschrift für Pflanzenzuchtung 65: 353-354.

Charmet, G., Ravel, C. & Balfourier, F. 1997. Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theoretical and Applied Genetics 94: 1038-1046. https://doi.org/10.1007/s001220050512

Dolezel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M., Nardi, L. & Obermayer, R. 1998. Plant genome size estimation by flow cytometry: interlaboratory comparison. Annals of Botany 82: 17-26. https://doi.org/10.1093/oxfordjournals.aob.a010312

Hackel, E. 1882. Monografia Festucarum Europearum. Kassel and Berlin: T. Fischer. https://doi.org/10.5962/bhl.title.15610

Hammatt, N., Blackall, N.W. & Davey, M.R. 1991. Variation in the DNA content of Glycine species. Journal of Experimental Botany 42: 659-665. https://doi.org/10.1093/jxb/42.5.659

Hand, M., Cogan, N.O.I., Stewar,t A.V. & Forster, J.W. 2010. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evolutionary Biology 10: 303-320. https://doi.org/10.1186/1471-2148-10-303 PMid:20937141 PMCid:PMC2958922

Harper, J.A., Thomas, I.D., Lovatt, J.A. & Thomas, H.M. 2004. Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Plant Systematics and Evolution 245: 163-168. https://doi.org/10.1007/s00606-003-0110-2

Humphreys, M.W., Thomas, H.M., Morgan, W.G., Meredith, M.R., Harper, J.A., Thomas, H., Zwierzykowski, Z. & Ghesquiére, M. 1995. Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75: 171-174. https://doi.org/10.1038/hdy.1995.120

Huska, D., Leitch, I.J., De Carvalho, J.F., Leitch, A.R., Salmon, A., Ainouche, M. & Kovarik, A. 2016. Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions 18: 2137-2151. https://doi.org/10.1007/s10530-015-0956-6

Inda, L.Á., Segarra-Moragues, J.G., Müller, J., Peterson, P.M. & Catalán, P. 2008. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Molecular Phylogenetics and Evolution 46: 932-957. https://doi.org/10.1016/j.ympev.2007.11.022 PMid:18226932

Inda, L. Á., Sanmartín, I., Buerki, S. & Catalán, P. 2014. Mediterranean origin and Miocene-Holocene Old World diversification of meadow fescues and ryegrasses (Festuca subgenus Schedonorus and Lolium). Journal of Biogeography 41: 600-614. https://doi.org/10.1111/jbi.12211

Inda, L. Á. & Wolny, E. 2013. Fluorescent in situ hybridization of the ribosomal RNA genes (5S and 35S) in the genus Lolium: Lolium canariense, the missing link with Festuca? Anales del Jardín Botánico de Madrid 70: 97-102. https://doi.org/10.3989/ajbm.2329

Jenkins, G. & Hasterok, R. 2007. BAC ´landing’on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols 2: 88-98. https://doi.org/10.1038/nprot.2006.490 PMid:17401342

Kopecky, D., Lukaszewski, A.J. & Dole?el, J. 2005. Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breeding 124: 454-458. https://doi.org/10.1111/j.1439-0523.2005.01127.x

Kopecky, D., Lukaszewski, A.J. & Dole?el, J. 2008a. Cytogenetics of Festulolium (Festuca ? Lolium hybrids). Cytogenetics and Genome Research 120: 370-383. https://doi.org/10.1159/000121086 PMid:18504366

Kopecky, D., Lukaszewsk, A.J. & Dole?el, J. 2008b. Meiotic behavior of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Research 16: 987-998. https://doi.org/10.1007/s10577-008-1256-0 PMid:18830677

Kopeck?, D., Havránková, M., Loureiro, J., Castro, S., Lukaszewski, A.J., Barto?, J., Kopecká, J. & Dole?el, J. 2010. Physical distribution of homoeologous recombination in individual chromosomes of Lolium multiflorum/Festuca pratensis substitutions. Cytogenetic and Genome Research 129: 162-172.

Ksiazczyk, T., Taciak, M. & Zwierzykowski, Z. 2010. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. Journal of Applied Genetics 51: 449-60. https://doi.org/10.1007/BF03208874 PMid:21063062

Leggett, J.M. & Markhand, G.S. 1995. The genomic identification of some monosomics of Avena sativa L-Cv Sun-Ii using genomic in situ hybridization. Genome 38: 747-751. https://doi.org/10.1139/g95-094 PMid:18470201

Leitch, I.J. & Bennett, M.D. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651-663. https://doi.org/10.1111/j.1095-8312.2004.00349.x

Lideikyte, L., Pasakinskiene, I., Lemeziene, N., Nekrosas, S. & Kanapeckas, J. 2008. FISH assessment of ribososmal DNA sites in the chromosome sets of Lolium, Festuca and Festuloium. Zemdirbyste 95: 116-124.

Loureiro, J., Kopeck?, D., Castro, S., Santos, C. & Silveira, P. 2007. Flow cytometric and cytogenetic analyses of Iberian Peninsula fescues. Plant Systematics and Evolution 269: 89-105. https://doi.org/10.1007/s00606-007-0564-8

Malik, C.P. & Thomas, P.T. 1966. Kariotypic studies in some Lolium and Festuca species. Caryologia 19: 167-196. https://doi.org/10.1080/00087114.1966.10796216

Ohri, D., Fritsch, R.M. & Hanelt, P. 1998. Evolution of genome size in Allium (Alliaceae). Plant Systematics and Evolution 210: 57-86. https://doi.org/10.1007/BF00984728

Otto, F. 1992. Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A. (ed.), Flow cytometry and cell sorting. Pp. 65-68. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-02785-1_8

Ozkan, H., Tuna, M. & Arumuganathan, K. 2003. Nonadditive Changes in genome Size During Allopolyploidization in the Wheat (Aegilops- Triticum) Group. Journal of Heredity 94: 260-264. https://doi.org/10.1093/jhered/esg053 PMid:12816968

Rees, H. & Walters, M.R. 1965. Nuclear DNA and the evolution of wheat. Heredity 20: 73-82. https://doi.org/10.1038/hdy.1965.9

Shaked, H., Kashkush, K., Ozkan, H., Feldman, M. & Levy, A.A. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749-1759. https://doi.org/10.1105/tpc.13.8.1749 PMid:11487690 PMCid:PMC139131

Sing, K.P., Raina, S.N. & Singh, A.K. 1996. Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39: 890-897. https://doi.org/10.1139/g96-112

?marda, P., Bures, P., Horova, L., Foggi, B. & Rossi, G. 2008. Genomic Size and GC Content Evolution of Festuca: Ancestral Expansion and Subsequent Reduction. Annals of Botany 101: 421-433.

Thomas, H.M., Harper, J.A., Meredith, M.R., Morgan, W.G. & King, I.P. 1997. Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40: 406-410. https://doi.org/10.1139/g97-054 PMid:18464836

Thomas, H.M., Harper, J.A., Meredith, M.R., Morgan, W.G., Thomas, I.D., Timms, E. & King, I.P. 1996. Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization. Chromosome Research 4: 486-490. https://doi.org/10.1007/BF02261775 PMid:8939359

Thomas, H.M., Morgan, W.G., Meredith, M.R., Humphreys, M.W., Thomas, H. & Leggett, J.M. 1994. Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum x Festuca pratensis by genomic in situ hybridization. Theoretical and Applied Genetics 88: 909-13. https://doi.org/10.1007/BF00220795 PMid:24186241

Torrecilla, P. & Catalán, P. 2002. Phylogeny of Broad-leaved and Fine-leaved Festuca Lineages (Poaceae) based on Nuclear ITS Sequences. Systematic Botany 27: 241-251.

Valladolid, A., Blas, R. & Gonzáles, R. 2004. Introducción al recuento de cromosomas somáticos en raíces andinas. In: Seminario, J. (ed.), Conservación y uso de la biodiversidad de raíces y tubérculos andinos: Una década de investigación para el desarrollo (1993-2003). Pp. 95-99. Lima: Centro Internacional de la Papa.

Vaughan, H.E., Jamilena, M., Rejon, C.R., Parker, J.S. & Garridoramos, M.A. 1993. Loss of nucleolar-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71: 574-580. https://doi.org/10.1038/hdy.1993.181

Publicado

2017-06-30

Cómo citar

Ezquerro-López, D., Kopecký D., & Inda, L. Á. (2017). Relaciones citogenéticas en el clado magrebí de Festuca subgen. Schedonorus (Poaceae), mediante la utilización de citometría de flujo y FISH. Anales Del Jardín Botánico De Madrid, 74(1), e052. https://doi.org/10.3989/ajbm.2455

Número

Sección

Artículos