Comparative physiological and biochemical mechanisms of drought tolerance in three contrasting cultivars of quinoa (Chenopodium quinoa)

Authors

  • Yemeng Zhang Northwest Institute of Plateau Biology, Chinese Academy of Sciences - Institute of Three-River-Source National Park, Chinese Academy of Sciences - University of the Chinese Academy of Sciences https://orcid.org/0000-0003-0676-5904
  • Qian Yang Northwest Institute of Plateau Biology, Chinese Academy of Sciences - Institute of Three-River-Source National Park, Chinese Academy of Sciences https://orcid.org/0000-0003-2540-6456
  • Lili Zhu Northwest Institute of Plateau Biology, Chinese Academy of Sciences - Institute of Three-River-Source National Park, Chinese Academy of Sciences - University of the Chinese Academy of Sciences https://orcid.org/0000-0002-9988-4306
  • Zhiguo Chen Northwest Institute of Plateau Biology, Chinese Academy of Sciences - Institute of Three-River-Source National Park, Chinese Academy of Sciences - University of the Chinese Academy of Sciences https://orcid.org/0000-0001-5474-2606

DOI:

https://doi.org/10.3989/ajbm.2625

Keywords:

Quinoa, drought, reactive oxygen species, antioxidants, germination

Abstract


Quinoa (Chenopodium quinoa Willd.) is a halophytic, pseudocereal crop, which has a richer nutritional value than other major cereals and is highly resistant to multiple abiotic stresses. In this study, the germination characteristics, morphological, physiological and biochemical changes of three contrasting quinoa cultivars under drought stress were compared. The results indicated that ‘Chaidamuhong’ and ‘Gongzha No.3’ showed stronger drought tolerance than ‘Qingli No.1’. This was mainly manifest in seed germination index, activity of antioxidant enzymes, cell membrane damage and morphological changes. We speculate that the increase in the activity of many antioxidant enzymes and the lower stomatal density make ‘Chaidamuhong’ and ‘Gongzha No.3’ superior in release of reactive oxygen species and water retention than ‘Qingli No.1’, thus reducing the degree of cell damage, and improving drought resistance.

Downloads

Download data is not yet available.

References

Amjad M., Ameen N., Murtaza B., Imran M., Shahid M., Abbas G., Naeem M.A. & Jacobsen S.E. 2020. Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. Physiologia Plantarum 168: 27-37. https://doi.org/10.1111/ppl.12930 PMid:30684269

Aziz A., Akram N.A. & Ashraf M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry 123: 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004 PMid:29248677

Bascuñán-Godoy L., Reguera M., Abdel-Tawab Y.M. & Blumwald E. 2016. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta 243: 591-603. https://doi.org/10.1007/s00425-015-2424-z PMid:26560134

Bates L.S., Waldren R.P. & Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. https://doi.org/10.1007/BF00018060

Bohnert H.J. & Jenson R.G. 1998. Plant stress adaptations-making metabolism move. Current Opinion in Plant Biology 1: 267-274. https://doi.org/10.1016/S1369-5266(98)80115-5

Bowler C., Van-Montagu M. & Inzé D. 2003. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology 43: 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503

Cai Z.Q. & Gao Q. 2020. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology 20: 70. https://doi.org/10.1186/s12870-020-2279-8 PMid:32050903 PMCid:PMC7017487

Campos P.S., Quartin V., Ramalho J.C. & Nunes M.A. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology 160: 283-292. https://doi.org/10.1078/0176-1617-00833 PMid:12749085

Choukr-Allah R., Rao N.K., Hirich A., Shahid M., Alshankiti A., Toderich K., Gill S. & Butt K.U. 2016. Quinoa for marginal environments: toward future food and nutritional security in MENA and central asia regions. Frontiers in Plant Science 7: 346. https://doi.org/10.3389/fpls.2016.00346 PMid:27066019 PMCid:PMC4810016

Cohen I., Zandalinas S.I., Huck C., Fritschi F.B. & Mittler R. 2021. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum 171: 66-76. https://doi.org/10.1111/ppl.13203 PMid:32880977

Demidchik V., Straltsova D., Medvedev S.S., Pozhvanov G.A., Sokolik A. & Yurin V. 2014. Stress-induced electrolyte leakage: the role of k+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany 65: 1259-1270. https://doi.org/10.1093/jxb/eru004 PMid:24520019

Dillehay T.D., Rossen J., Andres T.C. & Williams D.E. 2007. Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316: 1890-1893. https://doi.org/10.1126/science.1141395 PMid:17600214

Ellis R.H. & Roberts E.H. 1980. Towards a rational basis for testing seed quality. In Hebblethwaite P.D. (ed.), Seed Production: 605-635. London, Butterworths.

Filho A.M., Pirozi M.R., Borges J.T., Pinheiro-Sant'Ana H.M., Chaves J.B. & Coimbra J.S. 2017. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition 57: 1618-1630. https://doi.org/10.1080/10408398.2014.1001811 PMid:26114306

Foyer C.H. & Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17: 1866-1875. https://doi.org/10.1105/tpc.105.033589 PMid:15987996 PMCid:PMC1167537

Gámez A.L., Soba D., Zamarreño Á.M., García-Mina J.M., Aranjuelo I. & Morales F. 2019. Effect of water stress during grain filling on yield, quality and physiological traits of illpa and rainbow quinoa (Chenopodium quinoa Willd.) cultivars. Plants 8: 173. https://doi.org/10.3390/plants8060173 PMid:31207888 PMCid:PMC6631622

Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M. & Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9: 681. https://doi.org/10.3390/antiox9080681 PMid:32751256 PMCid:PMC7465626

Hinojosa L., Sanad M., Jarvis D.E., Steel P., Murphy K. & Smertenko A. 2019. Impact of heat and drought stress on peroxisome proliferation in quinoa. The Plant Journal: for Cell and Molecular Biology 99: 1144-1158. https://doi.org/10.1111/tpj.14411 PMid:31108001

Iqbal H., Yaning C., Waqas M., Shareef M. & Raza S.T. 2018. Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicology and Environmental Safety 164: 344-354. https://doi.org/10.1016/j.ecoenv.2018.08.004 PMid:30130733

Ishibashi Y., Yuasa T. & Iwaya-Inoue M. 2018. Mechanisms of maturation and germination in crop seeds exposed to environmental stresses with a focus on nutrients, water status, and reactive oxygen species. Advances in Experimental Medicine and Biology 1081: 233-257. https://doi.org/10.1007/978-981-13-1244-1_13 PMid:30288713

Ivanov A.G., Velitchkova M.Y., Allakhverdiev S.I. & Huner N. 2017. Heat stress-induced effects of photosystem I: an overview of structural and functional responses. Photosynthesis Research 133: 17-30. https://doi.org/10.1007/s11120-017-0383-x PMid:28391379

Jacobsen S.E. 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International 19: 167-177. https://doi.org/10.1081/FRI-120018883

Jacobsen S.E., Mujica A. & Jensen C.R. 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International 19: 99-109. https://doi.org/10.1081/FRI-120018872

Janků M., Luhová L. & Petřivalský M. 2019. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8: 105. https://doi.org/10.3390/antiox8040105 PMid:30999668 PMCid:PMC6523537

Kumar M., Kumar-Patel M., Kumar N., Bajpai A.B. & Siddique K. 2021. Metabolomics and molecular approaches reveal drought stress tolerance in plants. International Journal of Molecular Sciences 22: 9108. https://doi.org/10.3390/ijms22179108 PMid:34502020 PMCid:PMC8431676

Li D.Q., Zou Q. & Bing S. 1990. Relationship between water status and osmotic adjustment of wheat leaves different in drought resistance. Chinese Bulletin of Botany 7: 43-48.

Liu Y.H., Gao Q. & Jia H.K. 2006. Leaf-scale drought resistance and tolerance of three plant species in a semi-arid environment: application and comparison of two stomatal conductance models. Journal of Plant Ecology 30: 64-70. https://doi.org/10.17521/cjpe.2006.0009

López-Marqués R.L., Nørrevang A.F., Ache P., Moog M., Visintainer D., Wendt T., Østerberg J.T., Dockter C., Jørgensen M.E., Salvador A.T., Hedrich R., Gao C., Jacobsen S.E., Shabala S. & Palmgren M. 2020. Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany 71: 5333-5347. https://doi.org/10.1093/jxb/eraa285 PMid:32643753 PMCid:PMC7501820

Luna C.M., Pastori G.M., Driscoll S., Groten K., Bernard S. & Foyer, C.H. 2005. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany 56: 417-423. https://doi.org/10.1093/jxb/eri039 PMid:15569704

Meena M., Divyanshu K., Kumar S., Swapnil P., Zehra A., Shukli V., Yadav M. & Upadhyay R.S. 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5: e02952 . https://doi.org/10.1016/j.heliyon.2019.e02952 PMid:31872123 PMCid:PMC6909094

Parvez S., Abbas G., Shahid M., Amjad M., Hussain M., Asad S.A., Imran M. & Naeem M.A. 2020. Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety 187: 109814. https://doi.org/10.1016/j.ecoenv.2019.109814 PMid:31648076

Paul V., Sharma L., Pandey R. & Meena R. 2017. Measurement of stomatal density and stomatal index on leaf/plant surfaces. Website: https://www.researchgate.net/publication/321268177 [accessed: Jan. 2017] .

Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M. & Anjum N.A. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Russian Journal of Plant Physiology 115: 126-140. https://doi.org/10.1016/j.plaphy.2017.03.018 PMid:28364709

Punchkhon C., Plaimas K., Buaboocha T., Siangliw J.L., Toojinda T., Comai L., De-Diego N., Spíchal L. & Chadchawan S. 2020. Drought-tolerance gene identification using genome comparison and co-expression network analysis of chromosome substitution lines in rice. Genes 11: 1197. https://doi.org/10.3390/genes11101197 PMid:33066648 PMCid:PMC7602393

Quan L.J., Zhang B., Shi W.W. & Li H.Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology 50: 2-18. https://doi.org/10.1111/j.1744-7909.2007.00599.x PMid:18666947

Raja V., Majeed U., Kang H., Andrabi K.I. & John R. 2017. Abiotic stress: interplay between ros, hormones and MAPKs. Environmental & Experimental Botany 137: 42-157. https://doi.org/10.1016/j.envexpbot.2017.02.010

Ranal M.A. & Santana D.G. 2006. How and why to measure the germination process. Brazilian Journal of Botany 29: 1-11. https://doi.org/10.1590/S0100-84042006000100002

Sheoran S., Thakur V., Narwal S., Turan R., Mamrutha H.M., Singh V., Tiwari V. & Sharma I. 2015. Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl Biochem Biotechnol 177: 1282-1298. https://doi.org/10.1007/s12010-015-1813-x PMid:26319568

Toscano S., Farieri E., Ferrante A. & Romano D. 2016. Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science 7: 645. https://doi.org/10.3389/fpls.2016.00645 PMid:27242846 PMCid:PMC4867676

Mensbrugghe D.v.d., Osorio R.I, Burus A. & Baffes J. 2009. How to feed the world in 2050: macroeconomic environment, commodity markets-a longer term outlook. MPRA Paper 19019, University Library of Munich, Germany. https://mpra.ub.uni-muenchen.de/19019/.

Vega-Gálvez A., Miranda M., Vergara J., Uribe E., Puente L. & Martínez E. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90: 2541-2547. https://doi.org/10.1002/jsfa.4158 PMid:20814881

Wang Y.R., Yu L., Nan Z.B. & Liu Y.L. 2004. Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop science 44: 535-541. https://doi.org/10.2135/cropsci2004.5350

Weitbrecht K., Müller K. & Leubner-Metzger G. 2011. First off the mark: early seed germination. Journal of Experimental Botany 62(10): 3289-3309. https://doi.org/10.1093/jxb/err030 PMid:21430292

Winterbourn C.C., Kettle A.J. & Hampton M.B. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85: 765-792. https://doi.org/10.1146/annurev-biochem-060815-014442 PMid:27050287

Yang A., Akhtar S.S., Fu Q., Naveed M. & Jacobsen S.E. 2020. Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress. Plants 9: 672. https://doi.org/10.3390/plants9060672 PMid:32466435 PMCid:PMC7355930

Zhang M., Yang Y., Cheng Y., Zhou T., Duan X. & Gong M. 2014. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Botanica Boreali-Occidentalia Sinica 34: 1916-1926.

Zurita-Silva A., Fuentes F., Zamora P., Jacobsen S.E. & Schwember A.R. 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding 34: 13-30. https://doi.org/10.1007/s11032-014-0023-5

Published

2022-09-02

How to Cite

Zhang, Y. ., Yang, Q., Zhu, L., & Chen, Z. (2022). Comparative physiological and biochemical mechanisms of drought tolerance in three contrasting cultivars of quinoa (Chenopodium quinoa). Anales Del Jardín Botánico De Madrid, 79(1), e123. https://doi.org/10.3989/ajbm.2625

Issue

Section

Articles