Supermatrix analyses reveal the importance of outgroup, gene and taxon sampling in Onosma (Boraginaceae) phylogenetics

Authors

DOI:

https://doi.org/10.3989/ajbm.2630

Keywords:

Cystostemon, Lithospermeae, Maharanga, Onosma, outgroup, phylogeny, taxon/gene sampling

Abstract


Tribe Lithospermeae (Boraginaceae) consists of ca. 26 genera and 470 species, in which Onosma constitutes approximately one third of the species (~150). Although the tribe is strongly supported as monophyletic, both generic and species boundaries remain ambiguous. Among them, not only the phylogenetic position of Eastern Asian Onosma species, but also the taxonomic limits of the genus remain unclear. Whether Eastern Asian Onosma is monophyletic, or the genus should be widened to include Maharanga, and maybe Cystostemon, are still open questions. For these reasons, I performed 16 phylogenetic analyses with different taxon coverages, alignments, gene regions and outgroups, with up to 746 taxa of tribe Lithospermeae and with five DNA regions, using data from GenBank. The results, with the widest taxon coverage to date, show that while genus Onosma is not monophyletic in any of the analyses, the phylogenetic relationships among Onosma s.s., Eastern Asian OnosmaMaharanga and Cystostemon differ among analyses. However, the approximately unbiased (AU) test showed that the topology (((Eastern Asian Onosma+MaharangaCystostemonOnosma s.s.) is overwhelmingly supported. Therefore, the current study highlights the importance of taxon, gene and outgroup sampling in Onosma phylogenetics.

Downloads

Download data is not yet available.

References

Álvarez I. & Wendel J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434. https://doi.org/10.1016/S1055-7903(03)00208-2 PMid:14615184

Aygoren Uluer D., Hawkins J.A. & Forest F. 2020a. Interfamilial relationships in order Fabales: new insights from the nuclear regions sqd 1 and 26S rDNA. Plant Systematics and Evolution 306: 1-14. https://doi.org/10.1007/s00606-020-01691-7

Aygoren Uluer D., Forest F. & Hawkins J.A. 2020b. Supermatrix analyses and molecular clock rooting of Fabales: Exploring the effects of outgroup choice and long branch attraction on topology. Botany 98: 231-247. https://doi.org/10.1139/cjb-2019-0109

Barrett R.L., Clugston J.A., Cook L.G., Crisp M.D., Jobson P.C., Lepschi B.J., Renner M.A. & Weston P.H. 2021. Understanding Diversity and Systematics in Australian Fabaceae Tribe Mirbelieae. Diversity 13: 391. https://doi.org/10.3390/d13080391

Cecchi L. & Selvi F. 2009. Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circum-mediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58: 700-714. https://doi.org/10.1002/tax.583002

Cecchi L., Coppi A. & Selvi F. 2011. Evolutionary dynamics of serpentine adaptation in Onosma (Boraginaceae) as revealed by ITS sequence data. Plant Systematics and Evolution 297: 185-199. https://doi.org/10.1007/s00606-011-0506-3

Cecchi L., Coppi A., Hilger H.H. & Selvi F. 2014. Non-monophyly of Buglossoides (Boraginaceae: Lithospermeae): Phylogenetic and morphological evidence for the expansion of Glandora and reappraisal of Aegonychon. Taxon 63: 1065-1078. https://doi.org/10.12705/635.4

Chacón J., Luebert F. & Weigend M. 2017. Biogeographic events are not correlated with diaspore dispersal modes in Boraginaceae. Frontiers in Ecology and Evolution 5: 26. https://doi.org/10.3389/fevo.2017.00026

Chacón J., Luebert F., Selvi F., Cecchi L. & Weigend M. 2019. Phylogeny and historical biogeography of Lithospermeae (Boraginaceae): Disentangling the possible causes of Miocene diversifications. Molecular Phylogenetics and Evolution 14: 106626. https://doi.org/10.1016/j.ympev.2019.106626 PMid:31526848

Cohen J.I. & Davis J.I. 2009. Nomenclatural changes in Lithospermum (Boraginaceae) and related taxa following a reassessment of phylogenetic relationships. Brittonia 61: 101-111. https://doi.org/10.1007/s12228-009-9082-z

Cohen J.I. 2011. A phylogenetic analysis of morphological and molecular characters of Lithospermum L. (Boraginaceae) and related taxa: evolutionary relationships and character evolution. Cladistics 27: 559-580. https://doi.org/10.1111/j.1096-0031.2011.00352.x PMid:34875811

Cohen J.I. 2014. A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics 30: 139-169. https://doi.org/10.1111/cla.12036 PMid:34784688

Coppi A., Cecchi L., Nocentini D. & Selvi F. 2015. Arnebia purpurea: a new member of formerly monotypic genus Huynhia (Boraginaceae-Lithospermeae). Phytotaxa 204: 123-136. https://doi.org/10.11646/phytotaxa.204.2.3

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109 PMid:22847109 PMCid:PMC4594756

Guindon S. & Gascuel O. 2003 A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696-704. https://doi.org/10.1080/10635150390235520 PMid:14530136

Heath T.A., Hedtke S.M. & Hillis D.M. 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46: 239-257.

Jian S., Soltis P.S., Gitzendanner M.A., Moore M.J., Li R., Hendry T.A., Qiu Y.L., Dhingra A., Bell C.D. & Soltis D.E. 2008. Resolving an ancient, rapid radiation in Saxifragales. Systematic Biology 57: 38-57. https://doi.org/10.1080/10635150801888871 PMid:18275001

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. & Thierer T. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28. 1647-1649. https://doi.org/10.1093/bioinformatics/bts199 PMid:22543367 PMCid:PMC3371832

Koyuncu O., Yaylacı Ö.K., Özgişi K., Sezer O. & Öztürk D. 2013. A new Onosma (Boraginaceae) species from central Anatolia, Turkey. Plant Systematics and Evolution 299: 1839-1847. https://doi.org/10.1007/s00606-013-0839-1

Letunic I. & Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44: W242-W245. https://doi.org/10.1093/nar/gkw290 PMid:27095192 PMCid:PMC4987883

Mehrabian A.R., Sheidai M., Noormohammadi Z., Asrei Y. & Mozafarian V. 2011. Inter-simple sequence repeats (ISSR) and morphological diversity in Onosma L. (Boraginaceae) species in Iran. African Journal of Biotechnology 10: 10831-10838. https://doi.org/10.5897/AJB11.1910

Miller M.A., Pfeiffer W. & Schwartz T. 2011. The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, Louisiana. https://doi.org/10.1145/2016741.2016785

Nasrollahi F., Kazempour-Osaloo S., Saadati N., Mozaffarian V. & Zare-Maivan H. 2019. Molecular phylogeny and divergence times of Onosma (Boraginaceae ss) based on nrDNA ITS and plastid rpl32-trnL (UAG) and trnH-psbA sequences. Nordic Journal of Botany 37: e02060. https://doi.org/10.1111/njb.02060

Nilsson R.H., Ryberg M., Kristiansson E., Abarenkov K., Larsson K.H. & Kõljalg U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PloS ONE 1: e59. https://doi.org/10.1371/journal.pone.0000059 PMid:17183689 PMCid:PMC1762357

Qiu Y.L., Lee J., Whitlock B.A., Bernasconi-Quadroni F. & Dombrovska O. 2001. Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Molecular Biology and Evolution 18: 1745-1753. https://doi.org/10.1093/oxfordjournals.molbev.a003962 PMid:11504854

Rambaut A. & Drummond A.J. 2007. Tracer v1. 4. Website:https://beast.community/tracer [accessed: 23 Mar. 2022].

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180 PMid:12912839

Selvi F., Cecchi L., Hilger H.H. & Coppi A. 2017. A reappraisal of the genus Megacaryon (Boraginaceae, Lithospermeae) based on molecular, morphological, and karyological evidence. Systematics and Biodiversity 15: 552-563. https://doi.org/10.1080/14772000.2017.1290707

Shimodaira H. & Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114. https://doi.org/10.1093/oxfordjournals.molbev.a026201

Smith A.B. 1994. Rooting molecular trees: problems and strategies. Biological Journal of the Linnean Society 51: 279-292. https://doi.org/10.1111/j.1095-8312.1994.tb00962.x

Solís-Lemus C. & Ané C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics 12: e1005896. https://doi.org/10.1371/journal.pgen.1005896 PMid:26950302 PMCid:PMC4780787

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313 https://doi.org/10.1093/bioinformatics/btu033 PMid:24451623 PMCid:PMC3998144

Thomas D.C., Weigend M. & Hilger H.H. 2008. Phylogeny and systematics of Lithodora (Boraginaceae-Lithospermeae) and its affinities to the monotypic genera Mairetis, Halacsya and Paramoltkia based on ITS1 and trnLUAA-sequence data and morphology. Taxon 57: 79-97.

Trifinopoulos J., Nguyen L.T., von Haeseler A. & Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232-W235. https://doi.org/10.1093/nar/gkw256 PMid:27084950 PMCid:PMC4987875

Weigend M., Gottschling M., Selvi F. & Hilger H.H. 2009. Marbleseeds are gromwells-Systematics and evolution of Lithospermum and allies (Boraginaceae tribe Lithospermeae) based on molecular and morphological data. Molecular Phylogenetics and Evolution 52: 755-768. https://doi.org/10.1016/j.ympev.2009.05.013 PMid:19464377

Wu H.Y., Chan K.T., But G.W.C. & Shaw P.C. 2021. Assessing the reliability of medicinal Dendrobium sequences in GenBank for botanical species identification. Scientific Reports 11: 1-9. https://doi.org/10.1038/s41598-021-82385-z PMid:33564041 PMCid:PMC7873228

Yang H.M., Zhang Y.X., Yang J.B. & Li D.Z. 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers. Molecular Phylogenetics and Evolution 68: 340-356. https://doi.org/10.1016/j.ympev.2013.04.002 PMid:23583782

Zeng L., Zhang N., Zhang Q., Endress P.K., Huang J. & Ma H. 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytologist 214: 1338-1354. https://doi.org/10.1111/nph.14503 PMid:28294342

Zhu G.L., Harald R. & Rudolf K. 1995. Boraginaceae. In: Wu Z. Y. & Raven P. H. (eds), Flora of China 16: 329-427. Science Press, Beijing, & Missouri Botanical Garden Press, St. Louis.

Zwickl D.J. & Hillis D.M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588-598. https://doi.org/10.1080/10635150290102339 PMid:12228001

Published

2023-06-14

How to Cite

Aygören Uluer, D. (2023). Supermatrix analyses reveal the importance of outgroup, gene and taxon sampling in Onosma (Boraginaceae) phylogenetics. Anales Del Jardín Botánico De Madrid, 80(1), e133. https://doi.org/10.3989/ajbm.2630

Issue

Section

Articles