INTRODUCTION
⌅Smut fungi are plant parasites. They are characterized by a specific life cycle that alternates between a dikaryotic, plant-parasitic stage and a haploid, saprobic yeast phase, and by the presence of thick-walled teliospores. Smut fungi represent a phylogenetically heterogeneous group that has evolved three times independently in the Ustilaginomycotina, Microbotryales (Pucciniomycotina), and Entorrhizomycota (Begerow & al. 2014Begerow D., Schäfer A.M., Kellner R., Yurkov A., Kemler M., Oberwinkler F. & Bauer R. 2014. Ustilaginomycotina. In McLaughlin D.J. & Spatafora J.W. (eds.), The Mycota, vol 7, Part A, Systematics and evolution, 2nd edn.: 295-329. Springer, Berlin, Heidelberg.; He & al. 2022He M.-Q., Zhao R.-L., Liu D.-M., Denchev T.T., Begerow D., Yurkov A., Kemler M., Millanes A.M., Wedin M., McTaggart A.R., Shivas R.G., Buyck B., Chen J., Vizzini A., Papp V., Zmitrovich I.V., Davoodian N. & Hyde K.D. 2022. Species diversity of Basidiomycota. Fungal Diversity 114: 281-325.). They are mostly found on herbaceous plants, very rarely on woody hosts. More than 1900 species of smut fungi are currently known. The highest species diversity is reported from the northern hemisphere, with most species found in Europe and Asia (He & al. 2022He M.-Q., Zhao R.-L., Liu D.-M., Denchev T.T., Begerow D., Yurkov A., Kemler M., Millanes A.M., Wedin M., McTaggart A.R., Shivas R.G., Buyck B., Chen J., Vizzini A., Papp V., Zmitrovich I.V., Davoodian N. & Hyde K.D. 2022. Species diversity of Basidiomycota. Fungal Diversity 114: 281-325.).
The species of Anthracoidea Bref. (Anthracoideaceae, Ustilaginomycotina) have as hosts plants the genera Carex L., Carpha R.Br., Fuirena Rottb., Schoenus L., and Trichophorum Pers. (Cyperaceae). Anthracoidea form sori in female flowers around aborted nuts as ovoid, ellipsoidal or broadly ellipsoidal hard bodies (Denchev & al. 2021Denchev T.T., Denchev C.M., Koopman J., Begerow D. & Kemler M. 2021. Host specialization and molecular evidence support a distinct species of smut fungus, Anthracoidea hallerianae (Anthracoideaceae), on Carex halleriana (Cyperaceae). Willdenowia 51: 57-67.). The species of Microbotryum Lév. (Microbotryaceae, Pucciniomycotina) are parasites on hosts in ten dicot families. They form sori in various organs of the infected plants (flowers, anthers, ovules, filaments of stamina, branches of inflorescences, capitula, stems or leaves), filing them with single, subhyaline to dark reddish brown or dark purple, variously ornamented spores (Vánky 2011Vánky K. 2011[‘2012’]. Smut Fungi of the World. APS Press, St. Paul, Minnesota, USA.; Denchev & al. 2020Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. MycoKeys 64: 1-164.; Kemler & al. 2020Kemler M., Denchev T.T., Denchev C.M., Begerow D., Piątek M. & Lutz M. 2020. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus Microbotryum (Basidiomycota, Microbotryales). Mycological Progress 19: 481-493.).
The aim of this study was to increase the knowledge about the geographical distribution and host specialization of Anthracoidea pseudofoetidae L. Guo and three seed-destroying species of Microbotryum (M. duriaeanum (Tul. & C. Tul.) Vánky, M. moehringiae (Togashi & Y.Maki) Vánky, and M. moenchiae-manticae) (Lindtner) Vánky, as well as to provide new molecular data for these smut fungi.
MATERIAL AND METHODS
⌅The new records are based on collections that were discovered during a visit of two of the authors (T.T.D. & C.M.D.) to the herbarium at the Botanic Garden and Botanical Museum Berlin (B) in March 2022. Dried specimens from B were examined with a light microscope (LM) and scanning electron microscope (SEM). For LM observations and measurements, spores were mounted in lactoglycerol solution (w : la : gl = 1 : 1 : 2) on glass slides, gently heated to boiling point for rehydration, and then cooled. The measurements of spores are given in the form: min-max (extreme values) (mean ± 1 standard deviation). For SEM, spores were attached to specimen holders by double-sided adhesive tape and coated with gold in an ion sputter. SEM images were taken with a Hitachi FE SEM 8010. Information on shapes of spores is arranged in descending order of frequency. The descriptions of spore length range and spore ornamentation of Anthracoidea pseudofoetidae are in accordance with Denchev & al. (2020: 11)Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. MycoKeys 64: 1-164. and Denchev & al. (2013)Denchev T.T., Denchev C.M., Michikawa M. & Kakishima M. 2013. The genus Anthracoidea (Anthracoideaceae) in Japan and some adjacent regions. Mycobiota 2: 1-125., respectively. The descriptions given below are based entirely on the specimens examined.
Genomic DNA of the herbarium specimens was isolated using the myBudget Plant DNA KitTM (Bio-Budget Technologies GmbH, Germany) using the SLS protocol according to the manufacturer’s instructions. PCR of the ITS and/or the large subunit (LSU) region of the rDNA was performed using the primer pairs ITS1F/ITS4 and LR0R/LR6, respectively. Amplicons were purified using a modified ExoSAP (1:5 diluted in ddH2O; New England Biolabs, USA) protocol and subsequently sequenced using the respective forward and reverse primers with the Big-DyeTM Terminator Cycle Sequencing Kit V3.1 (Applied Biosystems) on an ABI3130xl Genetic Analyser at the Faculty of Biochemistry of the Ruhr-Universität Bochum, Germany. Forward and reverse reads were quality checked and assembled in Geneious 10.2.6 (Biomatters Ltd, New Zealand).
Multiple alignments were inferred using the online version of MAFFT 7 (Katoh & Standley 2013Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.) with either the E-INS-i (Microbotryum ITS and Anthracoidea LSU) or L-INS-i option (Microbotryum LSU). Leading and trailing gaps, as well as ambiguous sites were removed using GBlocks (Castresana 2000Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540-552.) implemented in SeaView (Gouy & al. 2010Gouy M., Guindon S. & Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221-224.), whereby smaller final blocks, gap positions, and less strict flanking positions were allowed. For Microbotryum the ITS and LSU regions were concatenated before phylogenetic analysis. RAxML-NG (Kozlov & al. 2019Kozlov A.M., Darriba D., Flouri T., Morel B. & Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453-4455.) implemented in raxmlGUI 2.0 (Edler & al. 2021Edler D., Klein J., Antonelli A. & Silvestro D. 2021. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12: 373-377.) was used for phylogenetic inference and bootstrapping (1000 replicates). Before phylogenetic analyses, ModelTest-NG (Darriba & al. 2020Darriba D., Posada D., Kozlov A.M., Stamatakis A., Morel B. & Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37: 291-294.) was used to select the most appropriate nucleotide substitution model (Anthracoidea: GTR+I+G; Microbotryum: GTR+I+G). Bootstrap values ≥ 50 are shown above branches.
RESULTS AND DISCUSSION
⌅Taxonomic treatment
⌅Anthracoidea pseudofoetidae L. Guo, Fungal Diversity 21: 84, 2006Guo L. 2006. Six new species of Anthracoidea (Ustilaginales) from China. Fungal Diversity 21: 81-92.. Type: China, Xizang, Gégyai Xian, Alingshan, alt. 5200 m, in ovaries of Carex pseudofoetida Kük., 15 August 1976, Qinghai-Xizang expedition 13486 (HMAS 130321, holotype; isotype HUV 20091). Fig. 1.
Infection local. Sori in some female flowers, around aborted nuts as broadly ellipsoidal, subglobose or ovoid hard bodies, 1.0-1.7 mm long, initially covered by a thick, blackish brown peridium that later flakes away exposing a blackish brown, powdery on the surface spore mass. Spores very small-sized, irregularly rounded, subglobose, broadly ellipsoidal, ovoid or ellipsoidal, (8.5-)9-11.5(-12.5) ´ (8-)8.5-10.5(-11.5) (10.2 ± 0.7 ´ 9.3 ± 0.6) μm (n = 100), medium reddish brown; wall unevenly thickened, 0.9-1.5 μm thick, with a few paler, rounded areas with thinner wall (0.5-0.9 μm thick); internal swellings, light refractive areas, and protuberances absent; spore surface minutely verruculose, spore profile not affected. In SEM, spore wall depressed on 3-6 places, ornaments up to 0.15 μm high, usually solitary and sparsely spaced, occasionally partly confluent, forming short rows or small groups.
Specimen examined.-Russia, Altai Republic, Kosh-Agachskiy District, 20 km ENE Kosh-Agach, valley of the Kokorya River, 50°05′30″N, 88°53′57″E, alt. 2080 m, on Carex enervis C.A.Mey., 9 Aug 2008, leg. L. Martins 2476, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0240205; GenBank LSU OQ067238).
Hosts and Distribution.-On Cyperaceae: on Carex enervis, C. maritima Gunnerus, and C. pseudofoetida. Known from Asia (China and Russia) and North America (Greenland).
Comments.-Anthracoidea pseudofoetidae was recovered as a sister species to a group of A. aspera, A. arenaria, and A. cf. karii, however with low bootstrap support (Fig. 2, Table 1).
Species | Host | Voucher | Accession |
---|---|---|---|
Anthracoidea arenaria | Carex arenaria | PUL F916 | AY563606 |
A. aspera | C. chordorrhiza | HMH 2774 | AY563607 |
A. baldensis | C. baldensis | HMH 2861 | AY563599 |
A. bigelowii | C. bigelowii | HMH 2733 | AY563566 |
A. bigelowii | C. bigelowii | HMH 927 | AY563567 |
A. bigelowii | C. bigelowii | HMH 2736 | AY563568 |
A. buxbaumii | C. buxbaumii | HMH 2744 | AY563582 |
A. capillaris | C. capillaris | HMH 2769 | AY563596 |
A. caricis | C. pilulifera | HMH 3364 | AY563589 |
A. caricis-albae | C. alba | HMH 2869 | AY563594 |
A. caricis-albae | C. alba | HMH 2873 | AY563595 |
A. caricis-meadii | C. meadii | ISC 428408 | JN863083 |
A. carphae | Carpha alpina | M-40218 | AY563614 |
A. curvulae | Carex curvula | HMH 3912 | AY563611 |
A. curvulae | C. curvula | HMH 2380 | AY563612 |
A. elynae | C. myosuroides | HMH 3958 | AY563609 |
A. elynae | C. myosuroides | M 6794 | AY563610 |
A. globularis | C. globularis | HMH 2422 | AY563593 |
A. hallerianae | C. halleriana | SOMF 30199 | MT628660 |
A. hallerianae | C. halleriana | SOMF 30201 | MT628657 |
A. heterospora | C. elata | HMH 2438 | AY563600 |
A. heterospora | C. elata | HMH 921 | AY563601 |
A. hostianae | C. hostiana | HeRB 4706 | AY563581 |
A. inclusa | C. rostrata | HMH 2883 | AY563605 |
A. irregularis | C. ornithopoda | HMH 3480 | AY563590 |
A. irregularis | C. ornithopoda | HMH 3520 | AY563591 |
A. irregularis | C. digitata | HMH 933 | AY563592 |
A. karii | C. brunnescens | HMH 2777 | AY563575 |
A. karii | C. echinata | HMH 3892 | AY563576 |
A. karii | C. echinata | HMH 3676 | AY563577 |
A. karii | C. echinata | HMH 3414 | AY563578 |
A. karii | C. lachenalii | HMH 2644 | AY563579 |
A. karii | C. paniculata | HMH 3890 | AY563574 |
A. cf. karii | C. davalliana | HMH 3898 | AY563608 |
A. lasiocarpae | C. lasiocarpa | HMH 972 | AY563583 |
A. limosa | C. limosa | HMH 2428 | AY563572 |
A. limosa | C. limosa | HMH 2790 | AY563573 |
A. misandrae | C. atrofusca | HMH 2653 | AY563584 |
A. pamiroalaica | C. koshewnikowii | KRA F-2012-146 | KT006854 |
A. paniceae | C. panicea | HMH 2818 | AY563580 |
A. pratensis | C. flacca | HMH 3599 | AY563563 |
A. pratensis | C. flacca | HMH 1164 | AY563564 |
A. pratensis | C. flacca | HMH 3870 | AY563565 |
A. pseudofoetidae | C. enervis | B 10 0240205 | OQ067238 |
A. rupestris | C. rupestris | HMH 3948 | AY563598 |
A. cf. rupestris | C. glacialis | HMH 3692 | AY563588 |
A. sclerotiformis | C. punicea | M 4946 | AY563613 |
A. sempervirentis | C. firma | HMH 3612 | AY563585 |
A. sempervirentis | C. ferruginea | HMH 3616 | AY563587 |
A. sempervirentis | C. sempervirens | HMH 3950 | AY563586 |
A. subinclusa | C. hirta | HMH 3700 | AY563604 |
A. subinclusa | C. riparia | PUL F915 | AY563603 |
A. subinclusa | C. vesicaria | HMH 2809 | AY563602 |
A. turfosa | C. dioica | HMH 2797 | AY563571 |
A. turfosa | C. heleonastes | HMH 2662 | AY563569 |
A. turfosa | C. parallela | HMH 2523 | AY563570 |
A. vankyi | C. muricata | HMH 1305 | AY563597 |
Anthracoidea pseudofoetidae is recorded for the first time from Russia, on a new host plant species, Carex enervis. This smut fungus is an Arctic-alpine species with a restricted distribution (Denchev & al. 2020Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. MycoKeys 64: 1-164.). It has been previously known only on Carex pseudofoetida from the type locality in China (Xizang) (Guo 2006Guo L. 2006. Six new species of Anthracoidea (Ustilaginales) from China. Fungal Diversity 21: 81-92.), and on C. maritima from two localities in the High Arctic of Greenland (Denchev & al. 2020Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. MycoKeys 64: 1-164.). The species of Anthracoidea on Carex are host-specific smut fungi restricted to sedges belonging to the same or closely related sections (Denchev & al. 2021Denchev T.T., Denchev C.M., Koopman J., Begerow D. & Kemler M. 2021. Host specialization and molecular evidence support a distinct species of smut fungus, Anthracoidea hallerianae (Anthracoideaceae), on Carex halleriana (Cyperaceae). Willdenowia 51: 57-67.). All three hosts of A. pseudofoetidae were traditionally placed in Carex sect. Foetidae (L.H. Bailey) Kük. (Egorova 1999Egorova T.V. 1999. The Sedges (Carex L.) of Russia and Adjacent States (within the Limits of the Former USSR). Saint Petersburg State Chemical-Pharmaceutical Academy, Saint Petersburg & Missouri Botanical Garden Press, St. Louis.; Reznicek 2002Reznicek A.A. 2002. Carex Linnaeus sect. Foetidae (Tuckerman ex L.H. Bailey) Kükenthal. In Flora of North America Editorial Committee (eds.), Flora of North America north of Mexico 23: 309-311. Oxford University Press, New York and Oxford.). Currently, these sedges are considered belonging to the Disticha clade that includes 27 species (Roalson & al. 2021Roalson E.H., Jiménez-Mejías P., Hipp A.L., Benítez-Benítez C., Bruederle L.P., Chung K.-S., Escudero M., Ford B.A., Ford K., Gebauer S., Gehrke B., Hahn M., Hayat M.Q., Hoffmann M.H., Jin X.-F., Kim S., Larridon I., Léveillé-Bourret É., Lu Y.-F., Luceño M., Maguilla E., Márquez-Corro J.I., Martín-Bravo S., Masaki T., Míguez M., Naczi R.F.C., Reznicek A.A., Spalink D., Starr J.R., Uzma, Villaverde T., Waterway M.J., Wilson K.L. & Zhang S.-R. 2021. A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. Journal of Systematics and Evolution 59: 726-762.). Most species in this clade are distributed in North America and temperate Eurasia. Carex pseudofoetida and C. enervis are Central Asiatic species while C. maritima has a bipolar distribution (Egorova 1999Egorova T.V. 1999. The Sedges (Carex L.) of Russia and Adjacent States (within the Limits of the Former USSR). Saint Petersburg State Chemical-Pharmaceutical Academy, Saint Petersburg & Missouri Botanical Garden Press, St. Louis.; Reznicek 2002Reznicek A.A. 2002. Carex Linnaeus sect. Foetidae (Tuckerman ex L.H. Bailey) Kükenthal. In Flora of North America Editorial Committee (eds.), Flora of North America north of Mexico 23: 309-311. Oxford University Press, New York and Oxford.). Anthracoidea pseudofoetidae can be easily distinguished from other Anthracoidea species by a suite of distinctive features that includes: (i) sori covered by a thick, dark brown peridium; (ii) very small-sized spores; and (iii) a characteristic spore wall, depressed on 3-6 places where the wall is paler and thinner (Denchev & al. 2020Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. MycoKeys 64: 1-164.).
Microbotryum duriaeanum (Tul. & C. Tul.) Vánky, Mycotaxon 67: 43, 1998Vánky K. 1998 The genus Microbotryum (smut fungi). Mycotaxon 67: 33-60.; Ustilago duriaeana Tul. & C. Tul., Ann. Sci. Nat., Bot., Sér. 3, 7: 105, 1847. Type: ALGERIA, Tlemcen, on Cerastium glomeratum Thuill., 30 May 1842, M.C. Durieu de Maisonneuve (PC s.n., holotype). Fig. 3a-c.
Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, dark sepia (based on Rayner 1970Rayner RW. 1970. A Mycological Colour Chart. CMI, Surrey & British Mycological Society, Kew.) or dark purplish date (based on the Color identification chart of Anonymous 1969Anonymous. 1969. Flora of British Fungi. Colour Identification Chart. Her Majesty’s Stationery Office, Edinburgh.) spore mass. Spores subglobose, globose or broadly ellipsoidal, sometimes ovoid, (12-)13-16(-17) × (11.5-)12.5-14.5(-15.5) (14.4 ± 0.9 × 13.3 ± 0.8) μm (n = 100), light to medium reddish brown; wall reticulate, 1.9-2.5 μm thick (including reticulum), meshes (5-)6-8(-9) per spore diameter, polyhedral or irregular, 0.6-2.7(-3.5) μm wide, muri (0.8-)1.0-1.4(-1.7) μm high. In SEM, the meshes smooth, often with a hemispherical protuberance at the bottom. The description is based on the infected specimen of Cerastium brachypetalum subsp. roeseri (Boiss. & Heldr.) Nyman.
Specimens examined.-GREECE. Western Macedonia Region: Grevena, W of Kallithea, 39°51′01″N, 21°19′14″E, alt. 1050 m, on Cerastium brachypetalum subsp. roeseri, 16 May 2012, leg. R. Willing & E. Willing 219.396, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 1224088; GenBank ITS OQ096632, LSU OQ067234). Western Macedonia Region: Grevena, Milea, 40°11′00″N, 21°28′22″E, alt. 670 m, on Cerastium semidecandrum L., 24 May 2012, leg. R. Willing & E. Willing 221.910, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0499209; GenBank ITS OQ096633, LSU OQ067235).
Hosts and Distribution.-On Cerastium spp. (Caryophyllaceae). Known from Europe, North Africa, Asia, and North America.
Comments.-Both specimens of Microbotryum duriaeanum from this study fell into a clade with all other M. duriaeanum specimens sequenced up to date. The specimen on Cerastium brachypetalum subsp. roeseri emerged sister to all other M. duriaeanum specimens, whereas the specimen on C. semidecandrum formed a polytomy with the other specimens (Fig. 4, Table 2).
Species | Host | Voucher | ITS | LSU |
---|---|---|---|---|
Bauerago abstrusa | Juncus sp. | HUV18526 | DQ238719 | EF621955 |
Microbotryozyma collariae | n/a | ATCC:MYA-4666 | JN849458 | JN849460 |
Microbotryum adenopetalae | Silene adenopetala | KRAM F 55201 | DQ366848 | DQ366876 |
M. afromontanum | Cerastium afromontanum | BRIP: HUV 20888 | MN657185 | MN657208 |
M. alpinum | Pinguicula alpina | TUB 015871 | EF621944 | EF621995 |
M. anomalum | Fallopia convolvulus | GLM 59392 | EF621921 | EF621960 |
M. arcticum | Silene uralensis subsp. arctica | SOMF 29999 | MK474659 | MK474658 |
M. bardanense | S. moorcroftiana | KRAM F 54962 | DQ366856 | DQ366877 |
M. betonicae | Stachys alopecuros | GZU 86-98, Scheuer 4983 | EF621927 | EF621967 |
M. bistortarum | Bistorta vivipara | M-0066101 | DQ238709 | EF621969 |
M. bosniacum | Koenigia alpina | M-0066097 | DQ238740 | EF621977 |
M. cardui | Carduus acanthoides | SOMF 30191 | MN657187 | MN657210 |
M. cardui | C. crispus | SOMF 30190 | MN657188 | MN657211 |
M. cephalariae | Cephalaria humilis | BRIP: HUV 10980 | MN657203 | MN657212 |
M. chloranthae-verrucosum | Silene chlorantha | B 70 0007571 | AY877404 | DQ366878 |
M. cichorii | Cichorium intybus | LE 231009 | MN657189 | MN657213 |
M. cordae | Persicaria hydropiper | B 70 0006023 | DQ238726 | EF621978 |
M. coronariae | Silene flos-cuculi | KR 23797 | KC684887 | KC684886 |
M. dianthorum | Dianthus monspessulanus | TUB 011802 | AY588080 | DQ366871 |
M. ducellieri | Arenaria leptoclados | MA-Fungi 37800 | MN657190 | MN657214 |
M. duriaeanum | Cerastium brachypetalum | BRIP: HUV 3638 | MN657192 | MN657216 |
M. duriaeanum | C. brachypetalum | TUB 019596 | MN657191 | MN657215 |
M. duriaeanum | C. brachypetalum | MA 461701 | MN657194 | - |
M. duriaeanum | C. brachypetalum subsp. roeseri | B 10 1224088 | OQ096632 | OQ067234 |
M. duriaeanum | C. gracile | SOMF 30188 | MN657193 | MN657217 |
M. duriaeanum | C. semidecandrum | B 10 0499209 | OQ096633 | OQ067235 |
M. emodense | Persicaria chinensis | FO17516/DB1037 | DQ238743 | AY512858 |
M. flosculorum | Knautia arvensis | BRIP: HUV 20230 | MN657195 | MN657218 |
M. heliospermatis | Heliosperma pusillum | TUB 019570 | HQ832086 | HQ832087 |
M. holostei | Holosteum umbellatum | B 70 0006032 | DQ238722 | EF621981 |
M. intermedium | Scabiosa lucida | M-0066090 | DQ238723 | EF621982 |
M. jehudanum | Silene colorata | BRIP: HUV 18306 | MN657196 | MN657219 |
M. lagerheimii | Atocion rupestre | TUB 011817 | AY588100 | DQ366874 |
M. liroi | Pinguicula villosa | KRAM 296281 | KY421500 | KY421502 |
M. lychnidis-dioicae | Silene latifolia | TUB 011795 | AY588096 | DQ366886 |
M. majus | S. otites | B 70 0006042 | AY877419 | DQ366858 |
M. marginale | Bistorta officinalis | TUB 015881 | EF621940 | EF621989 |
M. minuartiae | Minuartia recurva | TUB 012519 | DQ366853 | DQ366862 |
M. moehringiae | Moehringia trinervia | BRIP: HUV 19024 | MN657197 | MN657220 |
M. moehringiae | M. trinervia | B 10 0298453 | OQ096635 | OQ067237 |
M. moenchiae-manticae | Moenchia erecta | K(M) 106303 | MN657198 | MN657221 |
M. moenchiae-manticae | M. mantica | BRIP: HUV 4126 | MN657199 | MN657222 |
M. moenchiae-manticae | M. mantica | B 10 0255208 | OQ096634 | OQ067236 |
M. onopordi | Onopordum bracteatum | M-0066075 | DQ238735 | EF621990 |
M. parlatorei | Rumex maritimus | B 70 0007574 | DQ238736 | EF621991 |
M. pinguiculae | Pinguicula vulgaris | STU 10004567401 | KY421498 | KY421501 |
M. polycnemoides | Polygonum polycnemoides | SOMF 30200 | MN989380 | MN989381 |
M. pustulatum | Bistorta officinalis | TUB 015872 | EF621947 | EF621998 |
M. reticulatum | Persicaria lapathifolia | M-0066067 | DQ238730 | EF621999 |
M. salviae | Salvia pratensis | TUB 015858 | EF621922 | EF621962 |
M. saponariae | Saponaria officinalis | TUB 011809 | AY588089 | DQ366887 |
M. scabiosae | Knautia arvensis | TUB 011789 | AY588083 | DQ366861 |
M. scabiosae | K. longifolia | TUB 015875 | EF621950 | EF622003 |
M. scolymi | n/a | n/a | AY800113 | - |
M. scorzonerae | Scorzonera humilis | M-0066054 | DQ238731 | EF622006 |
M. scorzonerae | S. humilis | TUB 015878 | EF621953 | EF622007 |
M. shastense | Polygonum shastense | M-0066053 | DQ238739 | EF622008 |
M. shykoffianum | Dianthus sylvestris | TUB 011800 | AY588082 | DQ366857 |
M. silenes-acaulis | Silene acaulis | TUB 019585 | JN223408 | JN223413 |
M. silenes-dioicae | S. dioica | TUB 012114 | AY877416 | DQ366868 |
M. silenes-inflatae | S. vulgaris | TUB 011793 | AY588105 | DQ366884 |
M. silenes-saxifragae | S. saxifraga | KR 23889 | JN000073 | JN000079 |
M. silybum | Silybum marianum | SOMF 30193 | MN657200 | MN657224 |
M. stellariae | Stellaria graminea | TUB 011807 | AY588109 | DQ366872 |
M. stygium | Rumex acetosa | M-0066047 | DQ238737 | EF622009 |
M. succisae | Succisa pratensis | M-0066045 | MN657204 | MN657225 |
M. succisae | S. pratensis | B 700007625 | MN657201 | MN657226 |
M. superbum | Dianthus superbus | TUB 011799 | AY588081 | DQ366867 |
M. tenuisporum | Persicaria glabra | M-0066041 | DQ238727 | EF622011 |
M. tragopogonis-pratensis | Tragopogon pratensis | TUB 015879 | EF621954 | EF622014 |
M. tragopogonis-pratensis | T. pratensis | TUB 012509 | DQ238733 | EF622012 |
M. tuberculiforme | Polygonum runcinatum | M-0066035 | DQ238744 | EF622015 |
M. violaceoirregulare | Silene vulgaris | TUB 011816 | AY588104 | DQ366875 |
M. violaceoverrucosum | S. viscosa | TUB 011815 | AY588103 | DQ366882 |
M. violaceum | S. nutans | TUB 011818 | AY588099 | DQ366880 |
Sphacelotheca cf. koordersiana | n/a | JAG 55 AFTOL-ID 1917 | DQ832221 | DQ832219 |
Microbotryum duriaeanum is reported here as a new record for Greece, on two host plants, among which Cerastium brachypetalum subsp. roeseri is recorded for the first time.
Microbotryum moehringiae (Togashi & Y.Maki) Vánky, Mycotaxon 67: 46, 1998Vánky K. 1998 The genus Microbotryum (smut fungi). Mycotaxon 67: 33-60.; Ustilago moehringiae Togashi & Y.Maki, Ann. Phytopathol. Soc. Japan 10: 139, 1940. Type: Japan, Fukuoka Pref., Yoshikawa-mura, on Moehringia trinervia var. platysperma (Maxim.) Makino, 7 May 1938, Y. Maki (TNS s.n., holotype). Fig. 3d-f.
Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, dark bay (based on Rayner 1970Rayner RW. 1970. A Mycological Colour Chart. CMI, Surrey & British Mycological Society, Kew.) or bay (based on the Color identification chart of Anonymous 1969Anonymous. 1969. Flora of British Fungi. Colour Identification Chart. Her Majesty’s Stationery Office, Edinburgh.) spore mass. Spores subglobose, globose or broadly ellipsoidal, sometimes ovoid, (10.5-)11.5-13.5(-14.5) × (10-)11-12.5(-13.5) (12.8 ± 0.6 × 11.8 ± 0.6) μm (n = 100), light to medium reddish brown; wall reticulate, 1.4-2.2 μm thick (including reticulum), meshes (4-)5-6(-7) per spore diameter, polyhedral or irregular, (0.7-)1.0-2.7(-3.3) μm wide, muri 0.6-1.1(-1.3) μm high. In SEM, meshes smooth, often with a hemispherical protuberance at the bottom.
Specimen examined.-MOROCCO. Fès-Meknès Region: Foret de Jaba, ca 15 km from El Hajeb, road to Ifrane, 33°36′N, 5°17′W, alt. 1400 m, on Moehringia trinervia (L.) Clairv., 9 Jun. 1992, leg. B. Valdés & al., 5th Iter Mediterraneum of OPTIMA, Morocco, Jun. 1992, 04-0237, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0298453; GenBank ITS OQ096635, LSU OQ067237).
Hosts and Distribution.-On Moehringia spp. (Caryophyllaceae). Known from Europe, North Africa, and Asia.
Comments.-The specimen of M. moehringiae from this study formed a well-supported clade with the only other specimen of M. moehringia (on Moehringia trinervia) sequenced so far, indicating that M. moehringiae is indeed a distinct species (Fig. 4, Table 2).
Microbotryum moehringiae is recorded for the first time from Africa. It has been previously reported for Asia (Japan, on Moehringia trinervia var. platysperma; Denchev & al. 2006Denchev C.M., Kakishima M., Shin H.D. & Lee S.K. 2006. Notes on some Japanese smut fungi. III. Ustilago moehringiae. Mycotaxon 98: 181-184.) and Europe (Spain, on M. pentandra J.Gay; Almaraz 1999Almaraz T. 1999. Quelques Ustilaginales de l’Andalousie (Espagne). Cryptogamie, Mycologie 20: 5-10., as ‘Ustilago duriaeana’, and France, on M. trinervia; Kemler & al. 2020Kemler M., Denchev T.T., Denchev C.M., Begerow D., Piątek M. & Lutz M. 2020. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus Microbotryum (Basidiomycota, Microbotryales). Mycological Progress 19: 481-493.).
Microbotryum moenchiae-manticae (Lindtner) Vánky, Mycotaxon 67: 46, 1998Vánky K. 1998 The genus Microbotryum (smut fungi). Mycotaxon 67: 33-60.; Ustilago moenchiae-manticae Lindtner, Bull. Mus. Hist. Nat. Serbe, Ser. B 3-4: 33, 1950. Type: Serbia, Rudnik near Milanovac, on Moenchia mantica Bartl., 15 Jun. 1946, V. Lindtner (HUV 4123, lectotype; Ustilag. Jugosl., no. 3, isolectotypes). Fig. 3g-i.
Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, sepia (based on Rayner 1970Rayner RW. 1970. A Mycological Colour Chart. CMI, Surrey & British Mycological Society, Kew.) or date brown (based on the Color identification chart of Anonymous 1969Anonymous. 1969. Flora of British Fungi. Colour Identification Chart. Her Majesty’s Stationery Office, Edinburgh.) spore mass. Spores subglobose, globose, broadly ellipsoidal or ovoid, (11-)12-15.5(-16.5) × (10-)11-14(-15) (13.8 ± 1.1 × 12.6 ± 1.1) μm (n = 100), medium reddish brown; wall reticulate, 1.4-2.2 μm thick (including reticulum), meshes (5-)6-9 per spore diameter, polyhedral or irregular, 0.7-2.5(-3.0) μm wide, muri 0.7-1.2(-1.5) μm high. In SEM, meshes smooth or rugulose, often with a hemispherical protuberance at the bottom.
Specimens examined.-GREECE. Thessaly: Karditsa, near Kryoneri, 39°19′39″N, 21°42′00″E, alt. 785 m, on Moenchia mantica, 29 May 2005, leg. R. Willing & E. Willing 140.865, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0255208; GenBank ITS OQ096634, LSU OQ067236). Western Greece Region: Aetolia-Acarnania, Ep. Nafpaktias, 1 km SE of Ano Hora, 38°35′N, 21°55′30″E, alt. 1020 m, on M. mantica, 15 Jun. 1991, leg. R. Willing 15.741, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 1224076).
Hosts and Distribution.-On Moenchia spp. (Caryophyllaceae). Known from Europe and North Africa.
Comments.-The sequence of the specimen B 10 0255208 formed a well-supported clade with two sequences from this species (Fig. 4, Table 2).
Microbotryum moenchiae-manticae is recorded for the first time from Greece. It has been previously reported from Europe - Bulgaria, Spain, and UK, on Moenchia erecta G.Gaertn., B.Mey. & Scherb. subsp. erecta (Denchev 1997Denchev C.M. 1997. Taxonomical studies on ovariicolous ustomycetes on Caryophyllaceae. I. Ustilago jehudana and U. moenchiae-manticae. Mycoscience 38: 323-328.; Denchev & al. 2010Denchev C.M., Denchev T.T., Spooner B.M. & Helfer S. 2010. New records of smut fungi. 3. Mycotaxon 114: 225-230.; Denchev & Denchev 2017Denchev T.T. & Denchev C.M. 2017. A noteworthy range extension for Haradaea moenchiae-manticae, a rarely reported smut fungus. Mycobiota 7: 7-12.), and Romania and Serbia, on M. mantica subsp. mantica (Lindtner 1950Lindtner V. 1950. Gare Jugoslavije (Ustilaginales Jugoslaviae). Bulletin du Muséum d’Histoire Naturelle du Pays Serbe, Série B 3-4: 1-110. (In Serbian); Vánky 1985Vánky K. 1985. Carpathian Ustilaginales. Symbolae Botanicae Upsalienses 24(2): 1-309.), and Africa-Algeria and Morocco, on M. erecta subsp. octandra (Ziz ex Mert. & W.D.J.Koch) Gürke ex Cout. (Denchev & Denchev 2017Denchev T.T. & Denchev C.M. 2017. A noteworthy range extension for Haradaea moenchiae-manticae, a rarely reported smut fungus. Mycobiota 7: 7-12.).