Anales del Jardín Botánico de Madrid 80 (1)
July-December 2023, e136
ISSN: 0211-1322, eISSN: 1988-3196
https://doi.org/10.3989/ajbm.576

A comparative karyological study of Helianthemum (Cistaceae): karyotype size, karyotype symmetry and evolution of chromosome number

Estudio cariológico comparativo del género Helianthemum (Cistaceae): tamaño del cariotipo, simetría del cariotipo y evolución del número de cromosomas

Sara MARTÍN-HERNANZ

Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, calle Profesor García González 2, 41012 Sevilla, Spain
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom

https://orcid.org/0000-0001-9881-9919

Rafael G. ALBALADEJO

Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, calle Profesor García González 2, 41012 Sevilla, Spain

https://orcid.org/0000-0002-0919-3545

Encarnación RUBIO

Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, calle Profesor García González 2, 41012 Sevilla, Spain

https://orcid.org/0000-0003-0957-8581

Polina VOLKOVA

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, 152742, Russia

https://orcid.org/0000-0002-3534-5792

Mohamed Djamel MIARA

Faculty of Nature and Life Sciences, Laboratory of Agro-Biotechnology and Nutrition in Semi-arid Areas, Ibn Khaldoun University of Tiaret, Tiaret, Algeria

https://orcid.org/0000-0002-7610-5277

Deniz ULUKUŞ

Department of Biotechnology, Faculty of Science, Selçuk University, Konya, Turkey

https://orcid.org/0000-0002-9627-5492

Mehmet SEZGIN

Biology Department, Faculty of Science, Çankırı Karatekin University, Uluyazı Campus, 18100 Çankırı, Turkey

https://orcid.org/0000-0001-7053-0371

Abelardo APARICIO

Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, calle Profesor García González 2, 41012 Sevilla, Spain

https://orcid.org/0000-0001-7122-4421

Abstract

In this study we assessed karyotype size and symmetry for a comprehensive taxonomic and geographic representation of Helianthemum and reconstructed chromosome number evolution in the genus. Using root tips, we photographed mitotic metaphase spreads to obtain chromosome number, total haploid (monoploid) length of the chromosome set (THL), karyotype formula, Stebbins’ classification of karyotype asymmetry, interchromosomal coefficient of variation of chromosome length (CVCL) and intrachromosomal mean centromeric asymmetry (MCA) using MATO (Measurement and Analysis Tools). We found that shifts in chromosome number are not a major driver in the evolution of Helianthemum, whose chromosome number evolved at a constant rate of single chromosome gain or loss. Karyotype asymmetry is very low and little variable in all taxonomic categories studied, with a predominance of metacentric and submetacentric small to medium-sized chromosomes about 3 μm at the genus level. However, total karyotype length varies from 16.91 μm to 47.84 μm at the species level, with a cytogenetic signature that is not conserved within subgenera and most sections. Overall, H. subg. Plectolobum shows both the longest and the most symmetrical karyotypes. We hypothesize that the variation in karyotype size in Helianthemum is likely a consequence of chromosome rearrangements that have occurred under selective pressures.

Keywords: 
ChromEvol; comparative cytogenetics; karyotype; plant cytotaxonomy.
Resumen

En este estudio analizamos el tamaño y la simetría del cariotipo de un elevado número de especies de Helianthemum y reconstruimos la evolución del número cromosómico. Para ello, analizamos metafases mitóticas de ápices radicales para obtener el número cromosómico, valores de la longitud (monoploide) total del cariotipo (THL), la fórmula cariotípica, el grado de asimetría según la clasificación de Stebbins, el coeficiente de variación intercromosómico de la longitud cromosómica (CVCL) y la asimetría intracromosómica media (MCA), parámetros obtenidos mediante MATO (Measurement and Analysis Tools). Encontramos que la diversificación en Helianthemum no está ligada a cambios en el número de cromosomas, el cual ha evolucionado de forma lenta y constante mediante bajas tasas de pérdida o ganancia de cromosomas. La asimetría del cariotipo es escasa y poco variable en todas las categorías taxonómicas, y existe una predominancia de cromosomas meta o submetacéntricos cuya longitud media a nivel de género es de c. 3 μm. En cambio, la longitud total del cariotipo oscila entre 16,91 y 48,84 μm y H. subg. Plectolobum posee los cariotipos de mayor longitud y simetría. Proponemos la hipótesis de que las diferencias en el tamaño del cariotipo en Helianthemum son consecuencia de reajustes cromosómicos sucedidos bajo presiones selectivas.

Palabras clave: 
Cariotipo; ChromEvol; citogenética comparativa; citotaxonomía vegetal.

Received: 22  January  2023; Accepted: 23  March  2023; Published online: 20 June 2023

Associate editor: Ana Ortega.

How to cite this article: Martín-Hernanz S., Albaladejo R.G., Rubio E., Volkova P., Djamel Miara M., Ulukuş D., Sezgin M., Aparicio A. 2023. A comparative karyological study of Helianthemum (Cistaceae): karyotype size, karyotype symmetry and evolution of chromosome number. Anales del Jardín Botánico de Madrid 80: e136. https://doi.org/10.3989/ajbm.576

CONTENT

INTRODUCTION

 

The comparative study of karyotype diversity among species of a lineage, including variation in chromosome number, size, and symmetry, is an essential cytotaxonomic information for understanding evolutionary patterns in plants (Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.). For example, trends potentially related to evolutionary processes have been described, such as lower chromosome numbers selected under unstable environmental conditions (Carta & al. 2018Carta A., Bedini G. & Peruzzi L. 2018. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. Scientific Reports 8: 14258. ) or small chromosome size characterizing species with large geographical distributions (Elliott & al. 2022Elliott T.L., Zedek F., Barrett R.L., Bruhl J.J., Escudero M., Hroudová Z., Joly S., Larridon I., Luceño M., Márquez-Corro J.I., Martín-Bravo S., Muasya A. M., Šmarda P., Thomas W.W., Wilson K.L. & Bureš P. 2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999-1014.). Indeed, environmental factors may favour large versus small genomes and affect the performance of organisms (Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.; Cacho & al. 2021Cacho N.I., McIntyre P.J., Kliebenstein D.J. & Strauss S.Y. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany 127: 887-902. ).

The full length of the chromosome set is correlated with genome size (i.e., the amount of DNA contained in a cell nucleus), but not with chromosome number (Soltis & al. 2005Soltis D.E., Soltis P.S., Endress P.K. & Chase M.W. 2005. Phylogeny and evolution of Angiosperms. Sinauer Associates, Washington.; Greilhuber & Leitch 2013Greilhuber J. & Leitch I.J. 2013. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 323-344. Springer-Verlag, Vienna. ; Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.), and the mechanisms of karyotype evolution entail both increases and decreases in the length of chromosome arms and the position of centromeres in monocentric chromosomes (Stebbins 1971Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London. ; Lysák & al. 2006Lysák M.A., Berr A., Pecinka A., Schmidt R., McBreen K. & Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of North America 103: 5224-5229. ; Schubert & Lysák 2011Schubert I. & Lysák M.A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.; Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.). Thus, it is essential for comparative cytotaxonomy to assess not only if chromosome number is a stable feature across the studied lineage but also to estimate karyotype diversity and size.

Helianthemum Mill. is a monophyletic lineage within the family Cistaceae Juss. composed of three subgenera, 10 sections and about 140 species and subspecies (Martín-Hernanz & al. 2021aMartín-Hernanz S., Velayos M., Albaladejo R.G. & Aparicio A. 2021a. Systematic implications from a robust phylogenetic reconstruction of the genus Helianthemum (Cistaceae) based on genotyping-by-sequencing (GBS) data. Anales del Jardín Botánico de Madrid 78: e113. ). It is distributed in the Palearctic region along a wide variety of environmental conditions (Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ) and includes significant variability in life form (therophytes to chamaephytes) and breeding systems (autogamous, facultatively xenogamous and xenogamous; Martín-Hernanz & al. 2023Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155.). From a cytotaxonomic perspective, the somatic numbers known so far for most species are 2n = 20 and 2n = 22, with the occasional 2n = 10 and 2n = 24 restricted to H. squamatum (L.) Dum.Cours. and H. caput-felis Boiss., respectively. Based on the chromosome number of H. squamatum, it was assumed that x = 5 was the base chromosome number in Helianthemum being most species ancient tetraploids (e.g., Dalgaard 1986Dalgaard V. 1986. Chromosome studies in flowering plants from Macaronesia. Anales del Jardín Botánico de Madrid 43: 83-111.). However, it has recently been inferred (Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.) that the chromosome number in H. squamatum is the result of a recent large dysploid genome reorganization, and that x = 10 is the most likely ancestral base chromosome number of the genus; thus, all species in Helianthemum can be considered diploid (but see below).

Although abundant information on chromosome number is available for Helianthemum, with about 65% of the species already known (Goldblatt & Johnson 1979Goldblatt P. & Johnson D.E. 1979. Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Website: http://www.tropicos.org/Project/IPCN.; Rice & al. 2015Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O. & Mayrose I. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19-26. ; Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.), other constituent karyotype features such as karyotype size and asymmetry remain virtually unknown. In this study we aimed to increase the number of Helianthemum species for which the chromosome number is known and to analyse karyotype features such as the full size (length) of the karyotype and the interchromosomal and intrachromosomal components of karyotype asymmetry (Peruzzi & Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.). We analysed these characteristics at the genus, subgenus, section, and species level to assess whether karyotypes are conserved within these taxonomic categories. This information will be essential to unravel the genomic mechanisms that operated in the evolutionary history of the genus, which has expanded and diversified widely around the Mediterranean basin since the Late Miocene, entailing shifts in life history traits and, remarkably, in environmental niches (Albaladejo & al. 2021Albaladejo R.G., Martín-Hernanz S., Reyes-Betancort J.A., Santos-Guerra A., Olangua-Corral M. & Aparicio A. 2021. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. Annals of Botany 127: 597-611. ; Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ; Martín-Hernanz & al. 2023Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155.).

MATERIAL AND METHODS

 

Sampling and nomenclature

 

We designed the sampling of this study aiming to include a broad geographical (Palearctic region) and taxonomic (three subgenera and 10 sections) representation of Helianthemum (see Fig. 1). Except for one species, all the seeds came from wild plants sampled in the field. We considered karyotype features to be constant at species level, so we included seeds from one or two populations per species. In every population we harvested ripe capsules from 5 to 15 different plants which were pooled in paper bags. Then, the capsules were carefully opened in the laboratory to extract the seeds. The accessions of clean seeds were kept in a dry and cool place until study. We additionally included seeds from four species stored in seed banks (Millennium Seed Bank and Israel Plant Gene Bank) (Appendix 1). In total, we karyotyped mitotic metaphase plates obtained from about 350 seeds, representing 85 populations and 78 species and subspecies.

medium/medium-AJBM-80-01-e136-gf1.png
Fig. 1.  Location of the 85 populations of Helianthemum whose seeds were analysed in this study.

In this study, we followed the taxonomic adscriptions and nomenclatural recommendations for the genus Helianthemum proposed by Martín-Hernanz & al. (2021a)Martín-Hernanz S., Velayos M., Albaladejo R.G. & Aparicio A. 2021a. Systematic implications from a robust phylogenetic reconstruction of the genus Helianthemum (Cistaceae) based on genotyping-by-sequencing (GBS) data. Anales del Jardín Botánico de Madrid 78: e113. . Notice that we present the results for H. sect. Helianthemum (s.l.) separated into two groups: (1) H. sect. ‘Helianthemum Canarian clade’, which include all the 15 species of H. sect. Helianthemum endemic to the Canary Islands (see Table 1), and (2) H. sect. ‘Helianthemum p.p.’ for the rest of the species in H. sect. Helianthemum. This is because the species from the Canary Islands conform a cohesive monophyletic lineage within H. sect. Helianthemum that rapidly diversified during the Pleistocene in the archipelago with idiosyncratic genomic, morphological, biogeographical, and ecological features (Aparicio & al. 2017Aparicio A., Martín-Hernanz S., Parejo-Farnés C., Arroyo J., Lavergne S., Yeşilyurt E.B., Zang M-L., Rubio E. & Albaladejo R.G. 2017. Phylogenetic reconstruction of the genus Helianthemum (Cistaceae) using plastid and nuclear DNA-sequences: systematic and evolutionary inferences. Taxon: 66: 868-885. ; Martín-Hernanz & al. 2019Martín-Hernanz S., Aparicio A., Fernández-Mazuecos M., Rubio E., Reyes-Betancort A., Santos-Guerra A., Olangua-Corral M. & Albaladejo R.G. 2019. Maximize resolution or minimize error? Using Genotyping-By-Sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.; Albaladejo & al. 2021Albaladejo R.G., Martín-Hernanz S., Reyes-Betancort J.A., Santos-Guerra A., Olangua-Corral M. & Aparicio A. 2021. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. Annals of Botany 127: 597-611. ; Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ). Helianthemum dagestanicum Rupr. has been ascribed to H. sect. Pseudomacularia Grosser on the basis of target sequencing according to Martín-Hernanz & al. (unpublished data). The voucher specimens from the populations studied have been deposited in the SEV herbarium (University of Seville) (Appendix 1).

Table 1.  Karyological data obtained in this study for the genus Helianthemum at subgenus, section, and species level. 2n, somatic chromosome number; Pop, source population; N, sample size (number of mitotic metaphase spreads); THL, mean total haploid (monoploid) length of chromosome set (Altinordu & al. 2016Altinordu F., Peruzzi L., Yu Y. & He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586-592.); CV (%), coefficient of variation of mean THL; Karyotype formula (Levan & al. 1964Levan A., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.); SKA, Stebbins’ karyotype asymmetry classification (Stebbins 1971Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London. ); CVCL (Mean ± SD), coefficient of variation of chromosome length (Paszko 2006Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 58: 39-48.); MCA (Mean ± SD), mean centromeric asymmetry (Peruzzi & Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.). Nomenclature follows Martín-Hernanz & al. (2021a)Martín-Hernanz S., Velayos M., Albaladejo R.G. & Aparicio A. 2021a. Systematic implications from a robust phylogenetic reconstruction of the genus Helianthemum (Cistaceae) based on genotyping-by-sequencing (GBS) data. Anales del Jardín Botánico de Madrid 78: e113. . Asterisks indicate new chromosome counts. Helianthemum dagestanicum Rupr. is ascribed to H. sect. Pseudomacularia following Martín-Hernanz & al. (unpublished).
2n Pop N THL (µm) CV (%) Karyotype formula SKA CVCL MCA
HELIANTHEMUM 10, 20, 22, 24 709 31.40 26.48 15.20±3.38 22.80±4.47
Subg. ERIOCARPUM 10, 20, 22 183 22.58 27.53 17.11±3.15 20.93±4.32
Sect. ARGYROLEPIS 10 9 24.57 - 14.52 10.91
H. squamatum (L.) Dum.Cours. 10 239 9 24.57 7.13 10m 1A 14.52±5.39 10.91±1.12
Sect. LAVANDULACEUM 20 19 37.26 3.07 14.12±1.92 28.07±7.43
H. motae Sánchez-Gómez, Jiménez & Vera 20 277 8 36.45 9.61 4m+16sm 3A 15.47±2.27 33.32±1.66
H. syriacum (Jacq.) Dum.Cours. 20 17 11 38.07 9.65 14m+6sm 2A 12.76±3.23 22.81±1.87
Sect. ERIOCARPUM 20 104 18.93 6.87 18.80±2.63 19.52±0.94
H. canariense (Jacq.) Pers. 20 403 7 17.68 9.21 16m+4sm 1A 16.78±2.98 19.20±3.45
H. confertum Dunal* 20 525 10 19.33 9.33 18m+2sm 1A 20.19±4.17 20.18±3.31
H. ellipticum (Desf.) Pers. 20 374 10 19.19 8.06 16m+4sm 2A 21.04±4.63 20.79±7.56
H. gorgoneum Webb 20 348, 349 9 18.73 8.99 20m 1A 16.98±2.94 17.54±2.72
H. kahiricum Delile 20 374 8 19.71 7.63 19m+1sm 1A 22.35±3.67 18.32±1.95
H. lippii (L.) Dum.Cours. 20 283 6 17.52 6.91 16m+4sm 2A 22.47±3.95 19.09±2.60
H. sancti-antonii Schweinf.* 20 642 9 21.00 7.42 20m 1A 16.30±3.08 19.16±3.32
H. sessiliflorum (Desf.) Pers. 20 384, 385 13 16.91 9.35 15m+5sm 1A 18.07±3.37 19.24±5.01
H. sicanorum Brullo, Giusso & Sciandr. 20 297 8 21.21 5.11 20m 1A 20.15±2.62 20.38±2.49
H. stipulatum (Forssk.) C.Chr. 20 382 6 18.69 4.49 19m+1sm 1A 20.58±2.73 20.13±0.90
H. thymiphyllum Svent. 20 409 6 18.16 9.33 18m+2sm 1A 15.92±2.79 19.99±2.28
H. ventosum Boiss. 20 644 12 19.04 9.07 18m+2sm 1A 14.82±3.89 20.18±3.98
Sect. PSEUDOMACULARIA 22 51 25.67 14.64 14.17±1.29 24.11±1.28
H. antitauricum Davis & Coode* 22 647 10 27.86 9.04 10m+12sm 2A 15.79±3.12 25.91±3.57
H. dagestanicum Rupr.* 22 448 13 20.65 9.15 14m+8sm 1A 14.27±1.76 24.12±2.23
H. germanicopolitanum Bornm.* 22 645, 648 14 25.03 4.80 14m+8sm 1A 12.66±1.99 23.39±2.82
H. songaricum Zhao, Zhu & Cao* 22 643 14 29.12 6.59 15m+7sm 2A 13.97±1.77 23.02±3.17
Subg. PLECTOLOBUM 22, 24 137 38.27 16.78 14.30±1.94 20.23±4.05
Sect. CAPUT-FELIS 24 9 44.03 - 15.27 13.66
H. caput-felis Boiss. 24 275 9 44.03 5.93 24m 1A 15.27±1.58 13.66±1.66
H. sect. ATLANTHEMUM 22 6 24.09 - 18.70 26.04
H. sanguineum (Lag.) Lag. ex Dunal in DC. 22 295 6 24.09 6.83 13m+9sm 2A 18.70±2.98 26.04±3.49
H. sect. MACULARIA 22 14 30.82 39.20 12.70±1.94 25.24±7.69
H. lunulatum (All.) DC. 22 500 6 39.37 7.37 14m+8sm 2A 14.07±1.99 19.80±1.71
H. pomeridianum Dunal 22 352 8 22.28 9.89 5m+17sm 2A 11.32±2.75 30.68±7.00
Sect. PSEUDOCISTUS 22 108 40.39 4.76 14.11±1.53 19.39±1.87
H. cinereum subsp. rotundifolium (Dunal) Greuter & Burdet 22 429 12 37.14 8.88 17m+5sm 2A 13.53±1.67 19.46±2.55
H. frigidulum Cuatrecasas* 22 619 10 38.61 9.91 19m+3sm 2A 15.53±0.67 18.43±1.86
H. hymettium Boiss. & Heldr. 22 534 10 41.47 6.85 14m+8sm 2A 15.81±1.71 20.38±2.26
H. marifolium subsp. andalusicum (Font Quer & Rothm.) G.López* 22 49 14 42.22 8.85 14m+8sm 2A 14.72±1.49 21.20±1.62
H. oelandicum subsp. conquense (Borja & Rivas Goday ex G.López) Martín-Hernanz, Velayos, Albaladejo & Aparicio 22 242 10 38.95 9.71 17m+5sm 2A 12.36±1.78 18.28±2.02
H. oelandicum (L.) DC. subsp. oelandicum 22 576 7 39.30 9.98 15m+7sm 2A 15.59±3.32 20.89±2.39
H. origanifolium subsp. africanum B.Crespo, M.A.Alonso, A.Vicente & J.L.Villar* 22 621 7 41.97 6.42 18m+4sm 2A 13.73±2.99 18.50±1.90
H. pannosum Boiss. 22 615 6 40.77 4.52 14m+8sm 2A 12.75±0.89 17.92±2.11
H. polyanthum (Desf.) Pers. 22 117 12 43.80 8.64 12m+10sm 2A 16.07±1.90 23.23±2.28
H. raynaudii Ortega Oliv., Romero García & C. Morales 22 70 8 39.34 4.86 16m+6sm 2A 13.50±2.56 16.63±2.09
H. viscidulum Boiss. 22 81 11 40.67 7.11 16m+6sm 2A 11.61±1.27 18.33±1.45
Subg. HELIANTHEMUM 20 389 32.88 19.50 14.69±2.81 24.49±2.09
Sect. BRACHYPETALUM 20 24 21.70 5.13 21.74±1.79 24.74±1.62
H. angustatum Pomel 20 82 5 21.94 8.06 12m+8sm 2A 23.60±2.18 26.08±3.02
H. ledifolium (L.) Mill. 20 423 5 22.83 3.97 14m+6sm 2A 22.04±3.65 22.38±2.23
H. papillare Boiss. 20 262 7 21.86 9.09 12m+8sm 2A 19.30±3.07 25.12±1.88
H. salicifolium (L.) Mill. 20 288, 297 7 20.16 5.74 12m+8sm 2A 22.03±2.20 25.38±4.47
Sect. HELIANTHEMUM s.l. 20 365 33.99 16.42 13.98±2.74 24.47±4.37
Sect. HELIANTHEMUM p.p. 20 250 37.51 9.22 4.47±3.26 24.62±5.31
H. aegyptiacum (L.) Mill. 20 123 11 27.80 6.16 6m+14sm 3A 17.31±1.92 29.71±2.50
H. almeriense Pau 20 47 8 39.53 8.30 9m+11sm 2A 15.49±2.23 24.23±2.98
H. alypoides Losa & Rivas Goday 20 45 8 37.47 9.22 9m+11sm 2A 13.90±1.66 24.19±4.04
H. apenninum (L.) Mill. subsp. apenninum 20 239 6 37.38 9.82 10m+10sm 2A 16.27±1.86 25.89±3.07
H. apenninum subsp. stoechadifolium (Brot.) Samp. 20 236 14 41.54 7.53 12m+8sm 2A 13.34±1.91 22.81±2.62
H. croceum (Desf.) Pers. 20 573 13 38.15 8.47 12m+8sm 2A 13.66±1.80 22.28±3.89
H. fontqueri Sennen 20 41 9 37.63 4.80 11m+9sm 2A 15.78±2.26 23.59±2.12
H. grosii Pau & Font Quer 20 118, 425 9 37.62 5.85 9m+11sm 2A 17.13±2.10 23.04±2.43
H. helianthemoides (Desf.) Grosser 20 426 8 34.64 5.89 10m+10sm 2A 13.68±2.64 27.41±3.04
H. hirtum (L.) Mill. 20 431 14 34.00 5.87 13m+7sm 2A 13.21±2.00 21.77±1.39
H. kostchyanum Boiss.* 20 646 10 47.84 8.37 6m+10sm+4st 2A 17.41±1.06 29.91±1.70
H. marminorense Alcaraz, Peinado & Mart. Parras 20 276 10 35.25 9.60 10m+10sm 2A 13.94±3.10 24.16±3.21
H. morisianum Bertol. 20 574 9 36.82 5.02 12m+8sm 2A 13.03±1.48 20.69±2.09
H. neopiliferum Muñoz Garm. & Navarro 20 309 11 36.97 8.87 10m+10sm 2A 14.08±1.82 23.26±1.96
H. nummularium subsp. cantabricum (M.Laínz) Martín-Hernanz, Velayos, Albadalejo & Aparicio 20 373 7 37.68 4.94 12m+8sm 2A 13.96±1.77 23.21±2.27
H. nummularium (L.) Mill. subsp. nummularium 20 575 13 38.31 8.55 10m+10sm 1A 13.25±2.64 24.15±3.71
H. nummularium subsp. tinetense (M.Mayor & Fern.Benito) Martín-Hernanz, Velayos, Albaladejo & Aparicio 20 369 10 40.53 8.20 11m+9sm 2A 14.25±1.66 25.30±2.99
H. pergamaceum Pomel 20 114 10 34.83 7.79 11m+9sm 2A 12.39±2.75 22.81±1.76
H. raskebdanae Alonso, Crespo, Juan & Sáez 20 274 8 34.96 5.20 9m+11sm 2A 13.91±1.31 24.98±3.88
H. ruficomum (Viv.) Spreng. 20 111 9 36.23 8.66 7m+13sm 2A 13.32±1.18 26.20±2.21
H. sauvagei Raynaud 20 282 13 39.81 6.23 8m+12sm 2A 18.14±0.77 25.73±1.86
H. vesicarium Boiss.* 20 641 10 40.12 8.11 10m+10sm 2A 14.07±1.89 23.22±2.00
H. violaceum (Cav.) Pers. 20 81, 364 13 37.07 8.46 9m+11sm 2A 13.43±2.05 24.41±3.58
H. virgatum (Desf.) Pers. 20 424 8 38.54 9.94 6m+14sm 2A 12.40±1.88 25.38±1.83
H. viscarium Boiss. & Reut. 20 41, 275 7 37.03 7.22 8m+12sm 2A 14.44±0.80 27.25±3.57
Sect. HELIANTHEMUM Canarian clade 20 115 28.14 9.68 13.17±1.49 24.21±2.01
H. aganae Marrero Rodr. & R.Mesa 20 435 8 26.02 8.98 14m+6sm 2A 14.69±1.62 23.37±2.75
H. aguloi Marrero Rodr. & R.Mesa 20 436 10 27.77 9.90 16m+4sm 1A 11.44±2.12 21.60±2.81
H. bramwelliorum Marrero Rodr. 20 412 7 30.98 6.10 9m+11sm 2A 14.66±1.49 24.14±2.24
H. broussonetii Dunal 20 432 5 24.18 2.97 8m+12sm 2A 12.06±2.95 24.59±1.05
H. bystropogophyllum Svent. 20 419 5 24.84 8.43 13m+7sm 2A 12.59±2.47 24.00±2.41
H. cirae A.Santos 20 432 11 30.49 9.71 12m+8sm 2A 13.92±3.36 22.86±2.66
H. gonzalezferreri Marrero Rodr. 20 411 9 31.88 7.07 12m+8sm 1A 13.42±1.59 22.66±3.16
H. henriquezii A.Rebolé, A.Acevedo & A.García 20 432 7 27.04 7.49 10m+10sm 2A 13.61±2.08 24.46±2.08
H. inaguae Marrero Rodr., González-Mart. & González-Art. 20 418 10 31.86 9.24 10m+10sm 2A 12.90±2.39 22.92±1.56
H. juliae Wildpret 20 434 5 24.09 7.04 13m+7sm 2A 12.54±0.79 22.64±2.44
H. linii A.Santos 20 399 9 29.67 8.96 10m+10sm 2A 11.88±1.88 23.08±2.51
H. sp. nov. 1 20 405 6 30.07 9.89 6m+14sm 2A 16.06±3.28 29.38±2.87
H. teneriffae Coss. 20 401 6 26.49 9.72 11m+7sm+2st 2A 14.20±1.99 25.50±3.07
H. tholiforme Bramwell, J.Ortega & B.Navarro 20 420 5 26.80 4.92 6m+14sm 2A 11.07±1.86 27.45±3.57
H. tibiabinae Marrero Rodr., Díaz Bertrana & S.Scholz 20 437 10 29.86 7.04 11m+9sm 2A 15.49±6.14 24.44±3.85

Germination of seeds and karyotype analysis

 

The protocol for the germination of seeds in Helianthemum was described in detail in Aparicio & al. (2019)Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.. Briefly, all the material required for seed germination (sandpaper, Petri dishes, distilled water, filter paper, scissors, etc.) was introduced in an UV-cleaner box for about 40 minutes. Then, seeds were gently scarified by abrasion between two sheets of fine-grained sandpaper (Pérez-García & González-Benito 2006Pérez-García F. & González-Benito M.E. 2006. Seed germination of five Helianthemum species: effect of temperature and presowing treatments. Journal of Arid Environments 65: 688-693. ) and set for germination in Petri dishes at 20ºC. Root tips were pre-treated by immersion in 2 mM 8-Hydroxyquinoline (Tjio & Levan 1950Tjio J.H. & Levan A. 1950. The use of oxyquinoline in chromosome analysis. Anales de la Estación Experimental Aula Dei 2: 21-64.) for 4 h at 10ºC, fixed in 1:3 glacial acetic acid and absolute ethanol for at least 2.5 h at 10ºC, stained in alcoholic-hydrochloric acid-carmine for 24-48 h (Snow 1963Snow R. 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Technology 38: 9-13.) and then squashed in 45% acetic acid. For every species, clear metaphase spreads were photographed in an Olympus BX41 microscope equipped with a ColorView III digital camera.

Chromosome counts and karyotype analyses were carried out from mitotic metaphase photographs. We measured between 5-14 mitotic metaphase spreads for every species and used the tools provided by the software MATO (Measurement and Analysis Tools; Altinordu & al. 2016Altinordu F., Peruzzi L., Yu Y. & He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586-592.) to compute several karyological parameters. Aiming to assess karyotype length and karyotype heterogeneity, considering both the inter and intrachromosomal components of karyotype asymmetry (Peruzzi & Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.), we obtained five different parameters: (1) total haploid (monoploid) length of chromosome set (THL; Altinordu & al. 2016Altinordu F., Peruzzi L., Yu Y. & He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586-592.), (2) karyotype formula (Levan & al. 1964Levan A., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.), (3) karyotype asymmetry classification of Stebbins (Stebbins 1971Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London. ), (4) interchromosomal coefficient of variation of chromosome length (CVCL; Paszko 2006Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 58: 39-48.), and (5) intrachromosomal mean centromeric asymmetry (MCA; Peruzzi & Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.). To obtain mean THL at species level we discarded extreme values by merging in MATO only individual measurements which yielded a mean THL value with a coefficient of variation (CV) < 10%. Satellited chromosomes can be commonly observed in metaphase plates, but due to inconsistency among them we have not considered satellites in this study.

To test for significant relationships between chromosome number and the karyotype parameters, we converted the base chromosome number into a binary response variable (n = 10 to 0 and n = 11 to 1) and ran a phylogenetic logistic regression (Ives & Garland 2010Ives A.R. & Garland T. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59: 9-26.) with phylolm R package (Ho & Ane 2014Ho L.S.T. & Ane C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397-408.). We excluded n = 5 and n = 12 because these numbers are only present in one species each (see Introduction). We accounted for the shared ancestry of chromosome numbers using the TreePL phylogenetic tree explained in the following section.

Updating chromosome number evolution analysis

 

Chromosome number evolution in Helianthemum was already reconstructed by Aparicio & al. (2019)Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501. based on a phylogenetic hypothesis derived from DNA Sanger sequences (Aparicio & Albaladejo 2017Aparicio A. & Albaladejo R.G. 2017. On the identity of Helianthemum mathezii and H. pomeridianum (Cistaceae). Anales del Jardín Botánico de Madrid 74: e060.). To update this analysis, we used the time-calibrated phylogeny based on GBS (genotyping-by-sequencing) data obtained by the software TreePL (Martín-Hernanz & al. 2019Martín-Hernanz S., Aparicio A., Fernández-Mazuecos M., Rubio E., Reyes-Betancort A., Santos-Guerra A., Olangua-Corral M. & Albaladejo R.G. 2019. Maximize resolution or minimize error? Using Genotyping-By-Sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.). This phylogenetic tree was additionally modified by the inclusion of Sanger DNA sequences of H. dagestanicum (see methodology in Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ) and the exclusion of H. ordosicum Y.Z.Zhao, Zong Y.Zhu & R.Cao until confirmation of its polyploid (2n = 4x = 40) status. The updated analysis was also enhanced by the inclusion of all the species of H. sect. Pseudomacularia, whose chromosome numbers were unknown until this study. The time-calibrated phylogeny was pruned to keep one single tip per species. The final data set consisted of 73 species.

The updated time-calibrated phylogeny and the chromosome numbers were analysed using ChromEvol v.2.0 (Glick & Mayrose 2014Glick L. & Mayrose I. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution 31: 1914-1922.; Mayrose & al. 2010Mayrose I., Baker M.S. & Otto S. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology 59: 132-144.) to elucidate the mode of chromosome evolution. ChromEvol determines the probability of a certain model to explain the given data (haploid chromosome numbers) along a phylogeny, based on the combination of the first two or more of the following parameters: (i) gain or (ii) loss of a single chromosome, (iii) polyploidization, (iv) half increment of the chromosome number (demi-polyploidization) and (v) increment of the base number with regard of a rate of multiplication different from a regular duplication. Furthermore, two additional parameters permit to detect linear dependency between the current haploid number and the rate of (vi) gain and (vii) loss of chromosomes. Specifically, we performed the analyses using eight models of chromosome evolution implemented in ChromEvol that combine differently these parameters for chromosome number transitions: CONST_RATE, CONST_RATE_DEMI, CONST_RATE_DEMI_EST, CONST_RATE_NO_DUPL, LINEAR_RATE, LINEAR_RATE_DEMI, LINEAR_RATE_DEMI_EST and LINEAR_RATE_NO_DUPL.

Based on our own previous reconstruction of chromosome evolution (Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.) we run the analysis fixing the root of the phylogeny at a chromosome base number of n = 10. Models were compared using Akaike information criterion (AIC and ∆AIC), which allowed us to test the alternative hypotheses of chromosome evolution. The best model was plotted on the time-calibrated phylogeny using the ChromEvol functions v. 1 by N. Cusimano (https://www.en.sysbot.bio.lmu.de/people/employees/cusimano/use_r/) in R.

RESULTS

 

We obtained seeds and karyological data for 78 species and subspecies belonging to all the three subgenera and 10 sections of the genus Helianthemum across its distribution range (Fig. 1), including different life forms and species thriving in different environmental niches. Overall, 709 mitotic metaphase spreads were analysed meaning 9.09 ± 2.58 (mean ± SD) measurements for each species. The mean chromosome size in the genus Helianthemum is about 3 µm long, but above species level it may range from 1.69 μm in H. sessiliflorum (Desf.) Pers. to 4.91 μm in H. squamatum. Chromosome numbers resulted quite constant without instances of polyploidy, and mean THL ranged from 16.91 μm, in H. sessiliflorum, to 47.86 μm, in H. kostchyanum Boiss. Conversely, karyotype heterogeneity was generally low at the species, section, and subgenus level, with values of CVCL and MCA ranging from 11.07-23.60 and 10.91-33.32, respectively. Table 1 shows the karyological data obtained in this study at the genus, subgenus, section and species level.

Chromosome numbers and karyotype features

 

We obtained new chromosome counts for 11 species and subspecies, which are illustrated in Figure 2 (see also Table 1). Therefore, the number of species of Helianthemum whose chromosome number is known increases to c. 77%. We confirmed that the predominant somatic chromosome numbers are 2n = 20 and 22, while that 2n = 10 and 2n = 24 are restricted to just one species each (H. squamatum and H. caput-felis, respectively). However, we have unexpectedly found 2n = 22 for all the species of H. sect. Pseudomacularia [H. subg. Eriocarpum (Dunal) Martín-Hernanz, Velayos, Albaladejo & Aparicio], a chromosome number never reported so far out of H. subg. Plectolobum Willk. The phylogenetic logistic regression showed that chromosome number is not correlated with the karyotype parameters analysed, except marginally and negatively with CVCL (Table 2), i.e., the higher the number of chromosomes, the higher the interchromosomal homogeneity. As mentioned, satellited chromosomes are common (see for example Fig. 2a, b, c, h, i) but they have not been described in this study due to inconsistencies among metaphase spreads.

medium/medium-AJBM-80-01-e136-gf2.png
Fig. 2.  Mitotic metaphase spreads and mean total haploid (monoploid) length of chromosome set (THL) newly obtained in this study for Helianthemum subg. Eriocarpum (Dunal) Martín-Hernanz, Velayos, Albaladejo & Aparicio sect. Eriocarpum Dunal (a-b), sect. Pseudomacularia Grosser (c-f); H. subg. Plectolobum Willk. sect. Pseudocistus Dunal (g-h); H. subg. Helianthemum sect. Helianthemum (i-j). a, H. confertum Dunal 2n = 20, THL = 19.33 µm; b, H. sancti-antonii Schweinf. 2n = 20, THL = 20.59 µm; c, H. antitauricum Davis & Coode 2n = 22, THL = 27.86 µm; d, H. dagestanicum Rupr. 2n = 22, THL = 20.65 µm; e, H. germanicopolitanum Bornm. 2n = 22, THL = 24.57 µm; f, H. songaricum Zhao, Zhu & Cao 2n = 22, THL = 29.12 µm; g, H. frigidulum Cuatrecasas 2n = 22, THL = 38.61 µm; h, H. origanifolium subsp. africanum B.Crespo, M.A.Alonso, A.Vicente & J.L.Villar 2n = 22, THL = 41.98 µm; i, H. kostchyanum Boiss. 2n = 20, THL = 47.84 µm; j, H. vesicarium Boiss. 2n = 20, THL = 40.12 µm. sat = satellite chromosome. st = subtelocentric chromosome. Scale bars = 5 μm.
Table 2.  Results of the logistic regression of chromosome number against mean total haploid (monoploid) length of chromosome set (THL), coefficient of variation of chromosome length (CVCL) and mean centromeric asymmetry (MCA).
Estimate SE z-value p-value
THL -0.0106 0.0547 -0.1933 0.8468
CVCL -0.3339 0.1552 -2.1518 0.0314
MCA -0.1966 0.1214 -1.6202 0.1052

Our analyses showed that karyotype of Helianthemum can be considered quite symmetric (Table 1). At subgenus level, values of interchromosomal heterogeneity (CVCL) ranged between 14.30 ± 1.94 in H. subg. Plectolobum to 17.11 ± 3.15 in H. subg. Eriocarpum, and intrachromosomal heterogeneity (MCA) between 20.23 ± 4.05 in H. subg. Plectolobum to 24.49 ± 2.09 in H. subg. Helianthemum. At the section level, values of CVCL and MCA were also quite homogeneous ranging CVCL from 12.70 ± 1.94 in H. sect. Macularia Dunal to 21.74 ± 1.79 in H. sect. Brachypetalum Dunal, and MCA from 10.91 in the monospecific H. sect. Argyrolepis Spach to 28.07 ± 7.43 in H. sect. Lavandulaceum G.López. Moreover, CVCL and MCA were not correlated, and H. subg. Plectolobum showed even a more symmetric karyotype compared to the other two subgenera, particularly in mean centromeric asymmetry (Fig. 3). The asymmetry classification of Stebbins and the karyotype formula further showed regular symmetry and a predominance of metacentric (m) and submetacentric (sm) chromosomes, with some subtelocentric (st) chromosomes only present in H. teneriffae Coss. and H. kostchyanum (Table 1; Fig. 2i). We can discard chromosome structural heterozygosity, so odd numbers in karyotype formulas are the consequence of chromosome folding in photographs or subtle angle deviation in individual measurements (Yu, pers. comm.).

medium/medium-AJBM-80-01-e136-gf3.png
Fig. 3.  Scatter plot and regression line (dotted) for the intra and interchromosomal components of karyotype asymmetry for the Helianthemum species analysed in this study: CVCL (coefficient of variation of chromosome length) vs. MCA (mean centromeric asymmetry).

Nevertheless, it is very interesting to note that the total karyotype length (THL) resulted quite variable among subgenera, sections and species. THL values for H. subg. Eriocarpum, Plectolobum and Helianthemum were 22.58 µm, 38.27 µm, and 32.88 µm, respectively. Sections ranged from 18.93 µm in H. sect. Eriocarpum Dunal to 44.03 µm in the monospecific H. sect. Caput-felis G.López. The entire genus Helianthemum, the three subgenera, and H. sects. Pseudomacularia, Helianthemum (s.l.), and Macularia showed high heterogeneity in mean THL values across species, with CV > 10% (Table 1; Fig. 4). Conversely, mean THL had CV < 10% in the non-monospecific sects. Lavandulaceum, Eriocarpum, Brachypetalum and Pseudocistus Dunal. Notice that H. sect. Helianthemum p.p. and H. sect. Helianthemum Canarian clade had also CV < 10%.

medium/medium-AJBM-80-01-e136-gf4.png
Fig. 4.  Mean total haploid (monoploid) chromosome set length (THL) for the Helianthemum species analysed in this study, ordered from lower to higher values within each of the three subgenera. Sections are indicated by colours and chromosome numbers by shapes (see inset).

Chromosome number evolution

 

The analysis of chromosome number evolution with the ancestral base chromosome number fixed at n = 10 showed that the best-fitting model for Helianthemum was CONST_RATE_NO_DUPLI with an AIC value of 66.02 (Table 3). This scenario revealed a CONSTANT_RATE background with 0.02053 gain events Myr-1, 0.03258 loss events Myr-1 and no polyploid events across the phylogenetic tree (Fig. 5). In agreement with previous knowledge, we detected one shift in the mode of chromosome evolution in the lineage of H. squamatum (n = 5) in which the rate of chromosome losses increased several orders of magnitude (5.34359 events Myr-1).

Table 3.  Values of AIC for the chromosome evolution models tested for Helianthemum. The best model with the lowest AIC is shown in bold.
Model Log-likelihood AIC ΔAIC
CONST_RATE_NO_DUPL -31.01 66.02 0
CONST_RATE -31.01 68.01 1.99
CONST_RATE_DEMI -31.01 68.02 2
CONST_RATE_DEMI_EST -30.54 69.08 3.06
LINEAR_RATE_NO_DUPL -31.00 70.01 3.99
LINEAR_RATE -30.53 71.07 5.05
LINEAR_RATE_DEMI -30.53 71.07 5.05
LINEAR_RATE_DEMI_EST -30.54 73.07 7.07
medium/medium-AJBM-80-01-e136-gf5.png
Fig. 5.  Ancestral state reconstruction of chromosome number in Helianthemum based on the updated time-calibrated phylogeny using GBS (genotyping-by-sequencing) data (Martín-Hernanz & al. 2019Martín-Hernanz S., Aparicio A., Fernández-Mazuecos M., Rubio E., Reyes-Betancort A., Santos-Guerra A., Olangua-Corral M. & Albaladejo R.G. 2019. Maximize resolution or minimize error? Using Genotyping-By-Sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.). Pie charts represent the inferred probabilities, with the haploid chromosome number within the pie-section having the highest probability. Dotted lines represent cases of chromosome gain.

DISCUSSION

 

Chromosome number, chromosome size, karyotype length and karyotype symmetry are among the most used karyological attributes to describe trends in karyotype evolution (Stace 2000Stace C.A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.; Levin 2002Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.). The explanatory mechanisms for karyotype rearrangements involve from whole genome duplications (i.e., polyploidy) to primary chromosomal rearrangements such as paracentric or pericentric inversions, multiple chromosome fusions by symmetrical reciprocal translocations or Robertsonian rearrangements, loss, or inactivation of active centromeres such as translocations, fissions, fusions, or inversions (i.e., dysploidy) (Levin 2002Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.; Schubert & Lysák 2011Schubert I. & Lysák M.A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.; Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.). In Helianthemum, chromosome number and karyotype symmetry are quite conserved at the species, section, and subgenus levels, and might not be the major drivers in the evolution of the genus. However, karyotype length turn to be highly variable above species level, which leads us to consider possible frequent chromosomal rearrangements along the genus evolution in response to shifts in environmental niche or life history traits.

Chromosome size and number

 

Mean chromosome length in Helianthemum is about 3 µm long, albeit they range from small (1.69 µm) to medium-sized (4.91 µm) at section and subgenus levels. Remarkably, H. squamatum is both, the species with the lowest chromosome number (2n = 10) and the species with the longest chromosomes (4.91 µm), likely because its genome is the consequence of a large reorganization achieved by progressive primary chromosomal rearrangements (see Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.).

Except in one case (H. songaricum Schrenk ex Fisch. & C.A.Mey; see below) we did not find deviating chromosome numbers with respect to previous knowledge (Goldblatt & Johnson 1979Goldblatt P. & Johnson D.E. 1979. Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Website: http://www.tropicos.org/Project/IPCN.; Rice & al. 2015Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O. & Mayrose I. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19-26. ; Aparicio & al. 2019Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.). Also, all the new chromosome counts here provided are coincident with those of related species, such as 2n = 20 for H. confertum Dunal and H. sancti-antonii Schweinf. in H. sect. Eriocarpum, or 2n = 22 for H. frigidulum Cuatrecasas, H. marifolium subsp. andalusicum (Font Quer & Rothm.) G.López and H. origanifolium subsp. africanum M.B.Crespo, M.A.Alonso, A.Vicente & J.L.Villar in H. sect. Pseudocistus. Nevertheless, the chromosome number found for all the species of H. sect. Pseudomacularia (2n = 22) is unexpected since this number has never been reported for any species within H. subg. Eriocarpum (actually, out of H. subg. Plectolobum). Furthermore, it is remarkable that our observation of 2n = 22 for H. songaricum (see Fig. 2f) disagrees with Zhao & al. (2000)Zhao Y-Z., Cao R. & Zhu Z-Y. 2000. A new species of Helianthemum. Acta Phytotaxonomica Sinica 38: 294-296. who reported 2n = 20. Overall, it seems that the whole genus Helianthemum is integrated by diploid species, since only a few tetraploid populations have been reported in the literature for some therophyte species [e.g., H. aegyptiacum (L.) Mill., H. ledifolium (L.) Mill.; Goldblatt & Johnson 1979]. It is then essential to confirm the somatic number 2n = 40 reported for H. ordosicum (Zhao & al. 2000Zhao Y-Z., Cao R. & Zhu Z-Y. 2000. A new species of Helianthemum. Acta Phytotaxonomica Sinica 38: 294-296.), considering that this species is closely related to H. songaricum (in fact synonymized by Quiner & Gilbert 2007Quiner Y. & Gilbert M.G. 2007. Helianthemum. In Wu Z.Y., Raven P.H. & Hong D.Y. (eds.), Flora of China, 13: 70. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis. Website: http://www.eFloras.org [last accessed Oct 2022].).

Karyotype symmetry

 

Karyotype symmetry has two components, one related to variation among chromosome size and the other to variation in centromere position (Peruzzi& Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.). Most species of angiosperms are characterized by uniform symmetric karyotypes with mostly meta or submetacentric chromosomes (Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.), and it has been classically assumed that asymmetric karyotypes derived from symmetric ones (Stebbins 1971Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London. ). Nevertheless, cytogeneticists now believe that reversal situations may have occurred (Stace 2000Stace C.A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.) and that karyotype asymmetry is a transitory state rather than an evolutionary endpoint (Lysák & al. 2006Lysák M.A., Berr A., Pecinka A., Schmidt R., McBreen K. & Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of North America 103: 5224-5229. ). In this study we find that most chromosomes in Helianthemum are meta or submetacentric, and that indices of karyotype symmetry show consistently low values of heterogeneity and variation. Values of CVCL and MCA can reach 100 (or even higher), but in taxa in which variation is ostensible, the value of asymmetry indexes may span from 20-80 (see fig. 2 in Peruzzi & Eroğlu 2013Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.). Values of CVCL and MCA for Helianthemum were low and scarcely variable at the subgenus and section levels (overall from 10.91-33.32). At the species level, the highest values of intrachromosomal heterogeneity are found in H. motae Sánchez-Gómez, Jiménez & Vera, H. pomeridianum Dunal and H. kostchyanum Boiss. (MCA = 33.32, 30.68, 29.91, respectively), in which a higher proportion of submetacentric and subtelocentric chromosomes is found (see Table 1). It is interesting to note that H. subg. Plectolobum has the longest chromosomes and the lowest asymmetry (also evident in H. squamatum, at the species level), a result that supports that genomic processes involved in increasing chromosome size are also likely increasing chromosome symmetry (Levin 2002Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.; Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.).

Karyotype length

 

The total length of the karyotype is an indirect measure of the amount of DNA contained in the cell nucleus, and is thus related to the size of the genome, whose trends of variation and evolution have received increasing attention (Levin 2002Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.; Soltis & al. 2005Soltis D.E., Soltis P.S., Endress P.K. & Chase M.W. 2005. Phylogeny and evolution of Angiosperms. Sinauer Associates, Washington.; Weiss-Schneeweiss & Schneeweiss 2013Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.; Pellicer & al. 2018Pellicer J., Hidalgo O., Dodsworth S. & Leitch I.J. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.). In Helianthemum, the values of total haploid karyotype length between species range almost 3-fold from 16.91 μm in H. sessiliflorum (H. sect. Eriocarpum) to 47.84 μm in H. kostchyanum (H. sect. Helianthemum p.p.), disregarding chromosome number. But when THL is analysed at the section and subgenus levels remarkably interesting results appear.

THL values increase from 22.58 μm in H. subg. Eriocarpum to 33.99 μm in H. subg. Helianthemum and 38.27 μm in H. subg. Plectolobum, with high coefficients of variation (> 10%). This means that karyotype length is not a conserved cytogenetic trait neither among subgenera nor among sections (see Fig. 4). For example, in H. subg. Eriocarpum most species have low or medium THL values except those in H. sect. Lavandulaceum, and species of H. sect. Brachypetalum and H. sect. Helianthemum Canarian clade have clearly lower values of THL than the rest of H. sect. Helianthemum (i.e., H. sect. Helianthemum p.p.). In H. subg. Plectolobum the two species that integrate H. sect. Macularia have disparate THL values with H. pomeridianum having considerably lower THL values than H. lunulatum (All.) DC. (22.2 and 39.37 µm, respectively). In this case, both sister species diverged in a Pliocene vicariance now attested by an intercontinental disjunction, and their divergence also entailed an outstanding environmental niche shift (Aparicio & Albaladejo 2017Aparicio A., Martín-Hernanz S., Parejo-Farnés C., Arroyo J., Lavergne S., Yeşilyurt E.B., Zang M-L., Rubio E. & Albaladejo R.G. 2017. Phylogenetic reconstruction of the genus Helianthemum (Cistaceae) using plastid and nuclear DNA-sequences: systematic and evolutionary inferences. Taxon: 66: 868-885. ; Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ). The therophyte H. sanguineum (Lag.) Lag. ex Dunal also had a low THL value (24.09 µm). Sections Pseudomacularia and Helianthemum p.p. also showed high coefficients of variation, due to large variability among the four species of Pseudomacularia, and due to the existence of the therophyte H. aegyptiacum in H. sect. Helianthemum p.p. The THL values of the non-monospecific H. sects. Lavandulaceum, Brachypetalum, Pseudocistus were conserved among species (i.e., CV < 10%).

Chromosome number evolution

 

The pattern of chromosome number evolution in Helianthemum remains invariant even after the inclusion of some species and the entire H. sect. Pseudomacularia (with the unexpected somatic number 2n = 22): chromosome number shifts have not been a major driver in the evolution of Helianthemum, in which a constant rate of single chromosome increase or decrease is predominant. If n = 10 is the ancestral base chromosome number, Helianthemum has then evolved three independent instances of chromosome gain (see Fig. 5): (1) the ancestors of H. sect. Pseudomacularia, (2) the whole H. subg. Plectolobum and (3) the lineage of H. caput-felis. It is worth mentioning the rate of chromosome losses in the lineage of H. squamatum, which increased by several orders of magnitude compared to the whole phylogenetic tree. Although whole genome duplications have been considered a primary source of variation and evolution, dysploid changes can, indeed, be even more persistent that those achieved by polyploidy (Escudero & al. 2014Escudero M., Martín-Bravo S., Mayrose I., Fernández-Mazuecos M., Fiz-Palacios O., Hipp AL., Pimentel M., Jiménez-Mejías P., Valcárcel V., Vargas P. & Luceño M. 2014. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploidy changes. PLoS One 9: e85266. ).

Concluding remarks

 

The wealth of comparative cytogenetic information gathered in this study allows us to present a compelling picture of Helianthemum as a genus with stable chromosome numbers, whose evolution involved only three instances of slow chromosomes gain. Nevertheless, imprints of large genome reorganizations in this genus are quite evident, such as in H. squamatum, and in the high variation in karyotype (i.e., genome) size that we have found at subgenus, section and species levels. Indeed, in Helianthemum, regardless of chromosome number, karyotype size contains very relevant systematic and evolutionary information which we summarize in Figure 6. Note that when the mean THL values are averaged across sections, ‘small’ and ‘large’ karyotypes appear to be separated by a gap between 28 and 37 µm. On the one hand, small karyotypes below 28 µm are found in most sections of H. subg. Eriocarpum, all the therophyte species regardless their taxonomic position, all the species H. sect. Helianthemum Canarian clade plus H. pomeridianum. On the other hand, large karyotypes over 37 µm are found in H. sect. Helianthemum p.p. (except the therophyte H. aegyptiacum) and the whole of H. subg. Plectolobum (except H. pomeridianum). In other words, ‘small’ karyotypes are present in desert specialists, therophytes and the recently diversified species of the Canary Islands (Albaladejo & al. 2021Albaladejo R.G., Martín-Hernanz S., Reyes-Betancort J.A., Santos-Guerra A., Olangua-Corral M. & Aparicio A. 2021. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. Annals of Botany 127: 597-611. ), whose breeding system is also predominantly autogamous (Martín-Hernanz & al. 2023Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155.). On the other hand, ‘large’ karyotypes characterise mostly xenogamous chamaephyte species of Mediterranean and Eurosiberian distribution (Martín-Hernanz & al. 2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. ).

medium/medium-AJBM-80-01-e136-gf6.png
Fig. 6.  Mean total haploid (monoploid) length of chromosome set (THL) averaged per section in Helianthemum. Note that the two species of sect. Macularia [H. lunulatum (All.) DC. and H. pomeridianum Dunal] are shown separately due to their divergence in mean THL value. Helianthemum aegyptiacum (L.) Mill. is the only therophyte species in sect. Helianthemum and is also shown separately. Subgenera are identified by colour and chromosome number by shape. Names of therophyte species and sections are shown in bold. The assignment of the geographic distribution, environmental niches and breeding systems of taxonomic categories is based on Martín-Hernanz & al. (2021bMartín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. , 2023)Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155..

In future analyses we will use the power of a high-resolution phylogenomic reconstruction based on target capture data (Martín-Hernanz & al. unpublished) and 2C values of nuclear DNA amount (Pellicer & al. 2018Pellicer J., Hidalgo O., Dodsworth S. & Leitch I.J. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.) to trace the direction and strength of genome size evolution and its potential relationships with shifts in extrinsic (i.e., environmental niche) and intrinsic (i.e., breeding systems and habit) characteristics in the genus Helianthemum. Cytotaxonomy has always gone hand in hand with phylogenetics for a better understanding of chromosome and species evolution (Guerra 2012Guerra M. 2012. Cytotaxonomy: The end of childhood. Plant Biosystems 146: 703-710. ).

ACKNOWLEDGEMENTS

 

We are grateful to the following people and institutions for granting permission and for providing seeds: Andalusian Regional Government, Israel Plant Gene Bank, Millennium Seed Bank (Royal Botanic Gardens, Kew), Björn Widén (University of Lund), Ángel Fernández (Garajonay National Park), Ángel Palomares (Caldera de Taburiente National Park), Marco Díaz Bertrana (Gran Canaria), Lara Dixon (Conservatoire Botanique National Méditerranéen de Porquerolles), Pere Fraga Arguimbau (Jardí Botànic Marimurta), and Sandra García de Lucas and José Algarra (Red Andaluza de Jardines Botánicos y Micológicos). We are also grateful to Lorenzo Peruzzi (University of Pisa) and Yan Yu (University of Sichuan) for helpful comments on MATO. We thank M. Ivanova for help in the field. Finally, we thank Juan Viruel for supervising S.M-H. during her stay at the Royal Botanic Gardens (Kew) and for giving access to RBGK resources. Two anonymous reviewers provided useful suggestions. This work was supported by grants CGL2014-52459-P, CGL2017-82465-P and PID2020-116355GB-I00 from the Spanish Ministerio de Economía y Competitividad, the Scientific and Technological Research Council of Turkey (TÜBİTAK, no: 116Z446) and Project IBIW RAS (theme 121051100099-5). S.M-H. is currently funded by the Next Generation funds of the European Union through a Margarita Salas postdoctoral contract.

AUTHOR CONTRIBUTIONS

 

Conceptualization: AA, SM-H; Data curation: AA, ER, SM-H; Resources: AA, RGA, ER, SM-H, PV, MDM, DU, SM; Investigation: AA, SM-H; Analysis: AA, RGA, SM-H; Funding acquisition: AA, RGA, MS; Writing original draft: AA, SM-H; Writing, review and editing: SM-H, AA, RGA, ER.

REFERENCES

 

Albaladejo R.G., Martín-Hernanz S., Reyes-Betancort J.A., Santos-Guerra A., Olangua-Corral M. & Aparicio A. 2021. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. Annals of Botany 127: 597-611.

Altinordu F., Peruzzi L., Yu Y. & He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586-592.

Aparicio A. & Albaladejo R.G. 2017. On the identity of Helianthemum mathezii and H. pomeridianum (Cistaceae). Anales del Jardín Botánico de Madrid 74: e060.

Aparicio A, Escudero M., Valdés-Florido A., Pachón M., Rubio E., Albaladejo R.G., Martín-Hernanz S. & Pradillo M. 2019. Karyotype evolution in Helianthemum (Cistaceae): dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Botanical Journal of the Linnean Society 191: 484-501.

Aparicio A., Martín-Hernanz S., Parejo-Farnés C., Arroyo J., Lavergne S., Yeşilyurt E.B., Zang M-L., Rubio E. & Albaladejo R.G. 2017. Phylogenetic reconstruction of the genus Helianthemum (Cistaceae) using plastid and nuclear DNA-sequences: systematic and evolutionary inferences. Taxon: 66: 868-885.

Cacho N.I., McIntyre P.J., Kliebenstein D.J. & Strauss S.Y. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany 127: 887-902.

Carta A., Bedini G. & Peruzzi L. 2018. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. Scientific Reports 8: 14258.

Dalgaard V. 1986. Chromosome studies in flowering plants from Macaronesia. Anales del Jardín Botánico de Madrid 43: 83-111.

Elliott T.L., Zedek F., Barrett R.L., Bruhl J.J., Escudero M., Hroudová Z., Joly S., Larridon I., Luceño M., Márquez-Corro J.I., Martín-Bravo S., Muasya A. M., Šmarda P., Thomas W.W., Wilson K.L. & Bureš P. 2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999-1014.

Escudero M., Martín-Bravo S., Mayrose I., Fernández-Mazuecos M., Fiz-Palacios O., Hipp AL., Pimentel M., Jiménez-Mejías P., Valcárcel V., Vargas P. & Luceño M. 2014. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploidy changes. PLoS One 9: e85266.

Glick L. & Mayrose I. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution 31: 1914-1922.

Goldblatt P. & Johnson D.E. 1979. Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Website: http://www.tropicos.org/Project/IPCN.

Greilhuber J. & Leitch I.J. 2013. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 323-344. Springer-Verlag, Vienna.

Guerra M. 2012. Cytotaxonomy: The end of childhood. Plant Biosystems 146: 703-710.

Ho L.S.T. & Ane C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397-408.

Ives A.R. & Garland T. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59: 9-26.

Levan A., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.

Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford and New York.

Lysák M.A., Berr A., Pecinka A., Schmidt R., McBreen K. & Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of North America 103: 5224-5229.

Martín-Hernanz S., Aparicio A., Fernández-Mazuecos M., Rubio E., Reyes-Betancort A., Santos-Guerra A., Olangua-Corral M. & Albaladejo R.G. 2019. Maximize resolution or minimize error? Using Genotyping-By-Sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.

Martín-Hernanz S., Velayos M., Albaladejo R.G. & Aparicio A. 2021a. Systematic implications from a robust phylogenetic reconstruction of the genus Helianthemum (Cistaceae) based on genotyping-by-sequencing (GBS) data. Anales del Jardín Botánico de Madrid 78: e113.

Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Grall A. & Aparicio A. 2021b. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238.

Martín-Hernanz S., Albaladejo R.G., Lavergne S., Rubio E., Marín-Rodulfo M., Arroyo J. & Aparicio A. 2023. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum (Cistaceae). American Journal of Botany e16155.

Mayrose I., Baker M.S. & Otto S. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology 59: 132-144.

Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 58: 39-48.

Pellicer J., Hidalgo O., Dodsworth S. & Leitch I.J. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.

Pérez-García F. & González-Benito M.E. 2006. Seed germination of five Helianthemum species: effect of temperature and presowing treatments. Journal of Arid Environments 65: 688-693.

Peruzzi L. & Eroğlu H. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1-9.

Quiner Y. & Gilbert M.G. 2007. Helianthemum. In Wu Z.Y., Raven P.H. & Hong D.Y. (eds.), Flora of China, 13: 70. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis. Website: http://www.eFloras.org [last accessed Oct 2022].

Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O. & Mayrose I. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19-26.

Schubert I. & Lysák M.A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.

Snow R. 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Technology 38: 9-13.

Soltis D.E., Soltis P.S., Endress P.K. & Chase M.W. 2005. Phylogeny and evolution of Angiosperms. Sinauer Associates, Washington.

Stace C.A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.

Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.

Tjio J.H. & Levan A. 1950. The use of oxyquinoline in chromosome analysis. Anales de la Estación Experimental Aula Dei 2: 21-64.

Weiss-Schneeweiss H. & Schneeweiss G.M. 2013. Karyotype diversity and evolutionary trends in angiosperms. Genome size and the phenotype. In Leitch I.J., Greilhuber J., Doležel J. & Wendel J. (eds.), Plant genome diversity 2: 209-230. Springer-Verlag, Vienna.

Zhao Y-Z., Cao R. & Zhu Z-Y. 2000. A new species of Helianthemum. Acta Phytotaxonomica Sinica 38: 294-296.

Appendix 1. Source populations of the Helianthemum seeds studied in this paper ordered by population number (#). Voucher specimen numbers are given in brackets; s.n.: missing voucher.

 

#17. SPAIN. Cádiz: Olvera, Sierra de Líjar, 11 Jul. 2017, A. Aparicio & RG Albaladejo. H. syriacum (Jacq.) Dum.Cours. (SEV286515). #41. SPAIN. Murcia: Águilas, Cabo Cope, 12 May 2018, A. Aparicio & E. Rubio. H. fontqueri Sennen (SEV289821); H. viscarium Boiss. & Reut. (SEV286551). #45. SPAIN. Almería: Sorbas, Rio Aguas, 11 May 2018, A. Aparicio & E. Rubio. H. alypoides Losa & Rivas Goday (SEV286553). #47. SPAIN. Almería: Tabernas, 11 May 2018, A. Aparicio & E. Rubio. H. almeriense Pau (SEV289813). #49. SPAIN. Málaga: Parauta, Sierra de las Nieves, Conejeras, 20 Jul. 2021, RG Albaladejo, C. de Vega & E. Rubio. H. marifolium subsp. andalusicum (Font Quer & Rothm.) G.López (SEV289830). #70. SPAIN. Granada: Quéntar, Puerto de la Mora, towards El Pozuelo, 22 Jun. 2022, A. Aparicio & E. Rubio. H. raynaudii Ortega Oliv., Romero García & C.Morales (SEV286570). #81. SPAIN. Granada: Albuñuelas, towards Venta del Fraile, Cortijo de los Lagartos, 22 Jun. 2022, A. Aparicio & E. Rubio. H. violaceum (Cav.) Pers. (SEV289843); H. viscidulum Boiss. (SEV289847). #82. SPAIN. Granada: Alhama de Granada, El Navazo, 26 May 2011, A. Aparicio & RG Albaladejo. H. angustatum Pomel (SEV289848). #111. MOROCCO. El-Aïoum: May Taieb, towards reservoir Mohamed V, 02 Jul. 2018, E. Rubio. H. ruficomum (Viv.) Spreng. (SEV287196). #114. MOROCCO. Aknoul: 18 km towards Taza, 05 Jun 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. pergamaceum Pomel (SEV286531). #117. MOROCCO. Al-Hoceima: 6 km towards Izemmourèn, 04 Jun. 2018, A. Aparicio, J. Aparicio, S. Martín-Hernanz & E. Rubio. H. polyanthum (Desf.) Pers. (SEV286532). #118. MOROCCO. Al-Hoceima: close to Izemmourèn, 04 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. grosii Pau & Font Quer (SEV286534). #123. SPAIN. Sevilla: La Puebla del Río, pinares de Aznalcazar, 22 May 2022, A. Aparicio. H. aegyptiacum (L.) Mill. (SEV289812). #236. SPAIN. Huelva: Almonte, Matalascañas, 08 May 2022, A. Aparicio. H. apenninum subsp. stoechadifolium (Brot.) Samp. (SEV286539). #239. SPAIN. Granada: Escúzar, 10 Jul. 2018, A. Aparicio & E. Rubio. H. apenninum (L.) Mill. subsp. apenninum (SEV287171); H. squamatum (L.) Dum.Cours. (SEV289839). #242. SPAIN. Guadalajara: Tendilla, barranco Valdeandrés, 01 Aug. 2018, S. Martín-Hernanz. H. oelandicum subsp. conquense (Borja & Rivas Goday ex G.López) Martín-Hernanz, Velayos, Albaladejo & Aparicio (SEV289833). #262. SPAIN. Málaga: Parauta, Sierra de las Nieves, towards Puerto de los Pilones, 21 May 2015, A. Aparicio. H. papillare Boiss. (SEV289834). #274. MOROCCO. Nador: Ras-el-Ma, 2 km to Saidia, 01 Apr. 2016, A. Aparicio, J. Aparicio, S. Martín-Hernanz & E. Rubio. H. raskebdanae Alonso, Crespo, Juan & Sáez (SEV286763). #275. SPAIN. Alicante: Orihuela, Punta de Glea, 21 Apr. 2022, Aparicio, RG Albaladejo & E. Rubio. H. caput-felis Boiss. (SEV287178); H. viscarium Boiss. & Reut. (SEV289846). #276. SPAIN. Murcia: San Pedro del Pinatar, dune of San Pedro, 12 May 2018, A. Aparicio & E. Rubio. H. marminorense Alcaraz, Peinado & Mart.Parras (SEV286758). #277. SPAIN. Murcia: Águilas, Cocedores’ beach, 08 Sep. 2022, A. Aparicio & E. Rubio. H. motae Sánchez-Gómez, Jiménez & Vera (SEV286759). #282. MOROCCO. Agadir: Amerskroud towards Talaint, 29 Apr. 2022, A. Aparicio, R.G. Albaladejo & E. Rubio. H. sauvagei Raynaud (SEV286765). #283. MOROCCO. Taroudant: Ville Noughaylle, 30 Mar. 2016, A. Aparicio, J. Aparicio, S. Martín-Hernanz & E. Rubio. H. lippii (L.) Dum.Cours. (SEV289828). #288. CYPRUS. Larnaca: Xylotimou, Dhekelia, 12 Apr. 2016, A. Aparicio, M.A. Carrasco & S. Martín-Hernanz. H. salicifolium (L.) Mill. (SEV287202). #295. CYPRUS. Ayia Eirini: Ayia Erini, 14 Apr. 2016, A. Aparicio, M.A. Carrasco & S. Martín-Hernanz. H. sanguineum (Lag.) Lag. ex Dunal (SEV286764). #297. ITALY. Sicily: Gela, Torre Manfria, 11 Apr. 2022, A. Aparicio, RG Albaladejo & E. Rubio. H. salicifolium (L.) Mill. (SEV289836); H. sicanorum Brullo, Giusso & Sciandr. (SEV286766). #309. SPAIN. Málaga: Parauta, La Ventilla, 30 Jun. 2018, A. Aparicio. H. neopiliferum Muñoz Garm. & Navarro (SEV289832). #348. CAPE VERDE. Fogo: Chã das Caldeiras, 22 Oct. 2016, I. Hernanz, R. Martín & S. Martín-Hernanz. H. gorgoneum Webb (SEV286753). #349. CAPE VERDE. Fogo: Chã das Caldeiras, 22 Oct. 2016, I. Hernanz, R. Martín & S. Martín-Hernanz. H. gorgoneum Webb (SEV289822). #352. MARRUECOS. Taroudant: Sidi Abdellah Oussaid-Alegjane, 01 May 2022, Aparicio, RG Albaladejo & E. Rubio. H. pomeridianum Dunal (SEV289835). #364. SPAIN. Albacete: Vicorto, towards Solama de la Obeja, 15 Apr. 2017, E. Rubio. H. violaceum (Cav.) Pers. (SEV289844). #369. SPAIN. Oviedo: Tineo, La Castañera, 13 Jun. 2017, A. Aparicio, RG Albaladejo, S. Martín-Hernanz & E. Rubio. H. nummularium subsp. tinetense (M.Mayor & Fern.Benito) Martín-Hernanz, Velayos, Albaladejo & Aparicio (SEV287203). #373. SPAIN. Orense: Biobra, rute das Galegas, 13 Jun. 2017, A. Aparicio, RG Albaladejo, S. Martín-Hernanz & E. Rubio. H. nummularium subsp. cantabricum (M.Laínz) Martín-Hernanz, Velayos, Albadalejo & Aparicio (SEV289814). #374. MOROCCO. Agadir: Souss-Massa, Draâ: Afella Ighir, between Ait Mansour and Afella Ighir, 30 Apr. 2022, Aparicio, RG Albaladejo & E. Rubio. H. ellipticum (Desf.) Pers. (SEV289820); H. kahiricum Delile (SEV289826). #382. ISRAEL. Ascalón: Gvar’am, 02 Mar. 2018, A. Aparicio & RG Albaladejo, O. Fragman-Sapir & S. Martín-Hernanz. H. stipulatum (Forssk.) C.Chr. (SEV288162). #384. ISRAEL. Nir Yitzhak: Nir Yitzhak, 02 Mar. 2018, A. Aparicio & RG Albaladejo, O. Fragman-Sapir & S. Martín-Hernanz. H. sessiliflorum (Desf.) Pers. (SEV289837). #385. ISRAEL. Bne Netsarim: Bne Netsarim, 02 Mar. 2018, A. Aparicio, RG Albaladejo, O. Fragman-Sapir & S. Martín-Hernanz. H. sessiliflorum (Desf.) Pers. (SEV289838). #399. SPAIN. La Palma: Tijarafe, Torre del Time, 18 Jul. 2018, RG Albaladejo, S. Martín-Hernanz & M. Olangua. H. linii A.Santos (s.n.). #401. SPAIN. Tenerife: Ladera de Güímar, Canal de los Mil, 16 Jul. 2018, RG Albaladejo, S. Martín-Hernanz, M. Olangua & A. Santos. H. teneriffae Coss. (s.n.). #403. SPAIN. Tenerife: La Tejita, Montaña Roja, 09 May 2018, RG Albaladejo, S. Martín-Hernanz & M. Olangua. H. canariense (Jacq.) Pers. (SEV289815). #405. SPAIN. Tenerife: Chirche, Barranco Bermejo, 17 Jul. 2018, RG Albaladejo, S. Martín-Hernanz, M. Olangua & A. Santos. H. sp. nov. Tenerife (s.n.). #409. SPAIN. Lanzarote: La Caleta, Playa de Famara, 13 May 2018, S. Martín-Hernanz, M. Marín-Rodulfo & M. Olangua. H. thymiphyllum Svent. (SEV289842). #411. SPAIN. Lanzarote: Haría, El Bosquecillo, 14 May 2018, M. Díaz-Bertrana, S. Martín-Hernanz, M. Marín Rodulfo, M. Olangua & A. Reyes. H. gonzalezferreri Marrero Rodr. (s.n.). #412. SPAIN. Lanzarote: Haría, Riscos de Guinate, Fuente de las Ovejas, 14 May 2018, S. Martín-Hernanz, M. Marín-Rodulfo, M. Olangua & A. Reyes. H. bramwelliorum Marrero Rodr. (s.n.). #418. SPAIN. Gran Canaria: Inagua, Andén de Tasarte, 17 May 2018, N. Cabrera, I. Guillermes, S. Martín-Hernanz, M. Marín-Rodulfo, J.E. Naranjo & M. Olangua. H. inaguae Marrero Rodr., González-Mart. & González-Art. (s.n.). #419. SPAIN. Gran Canaria: Pajonales, 17 May 2018, N. Cabrera, I. Guillermes, S. Martín-Hernanz, M. Marín-Rodulfo, J.E. Naranjo & M. Olangua. H. bystropogophyllum Svent. (SEV 288156). #420. SPAIN. Gran Canaria: Montaña del Tauro, 18 May 2018, S. Martín-Hernanz, M. Marín-Rodulfo & M. Olangua. H. tholiforme Bramwell, Ortega & Navarro (SEV289841). #423. MOROCCO. Immouzer Du Kandar: Ain Chifa, Gite Karine, 03 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. ledifolium (L.) Mill. (SEV289827). #424. MOROCCO. Gareb: Mechra Hommadi, towards Hassi Berkane, 04 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. virgatum (Desf.) Pers. (SEV289845). #425. MOROCCO. Al Hoceimas: Rouadi, Dchar Maya, itineraire Tikkit, 05 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. grosii Pau & Font Quer (SEV287635). #426. MOROCCO. Immouzer Du Kandar: towards Ifrane, 05 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. helianthemoides (Desf.) Grosser (SEV 287636). #429. MOROCCO. Ifrane: towards Ras el Ma, 05 Jun. 2018, A. Aparicio, S. Martín-Hernanz & E. Rubio. H. cinereum subsp. rotundifolium (Dunal) Greuter & Burdet. (SEV289816). #431. SPAIN. Sevilla: Alcalá de Guadaira, Cortijo El Maestre, 31 May 2018, A. Aparicio. H. hirtum (L.) Mill. (SEV289824). #432. SPAIN. La Palma: Andén de la Cañada, 15 Jun. 2018, A. Palomares. H. broussonetii Dunal (s.n.). H. cirae A. Santos (s.n.); H. henriquezii A.Rebolé, A.Acevedo & A.García (s.n.). #434. SPAIN. Tenerife: PN Cañadas del Teide, Mesa del Obispo, 17 Jul. 2018, RG Albaladejo, S. Martín-Hernanz, M. Olangua, A. Reyes, M. Suárez & A. Santos. H. juliae Wildpret (s.n.). #435. SPAIN. La Gomera: ex horto at Güimar, Tenerife, 09 May 2011, R. Mesa. H. aganae Marrero Rodr. & R.Mesa (s.n.). #436. SPAIN. La Gomera: ex horto at Centro de Juego de Bolas, 08 Jul. 2018, R. Mesa, R. Chine & J.L. Silva. H. aguloi Marrero Rodr. & R.Mesa (s.n.). #437. SPAIN. Fuerteventura: Jandia, Morro Cavadero, 05 Jun. 2018, M. Díaz-Bertrana. H. tibiabinae Marrero Rodr., Díaz Bertrana & S. Scholz (s.n.). #448. RUSSIA. Dagestan: 3 km south from Khunzakh, 18 Sep. 2021, P. Volkova & M. Ivanova. H. dagestanicum Rupr. (SEV289819). #500. FRANCE. Tende: summit of Covin, 11 Sep. 2013, L. Dixon, & K. Diadema. H. lunulatum (All.) DC. (s.n.). #525. MOROCCO. Tiznit: 15 km towards Agadir, 01 May 2022, Aparicio, RG Albaladejo & E. Rubio. H. confertum Dunal in DC. (SEV289817). #534. GREECE. Vilia: towards Aspropyrgos, 14 May 2022, Aparicio, RG Albaladejo, S. Martín-Hernanz & E. Rubio. H. hymettium Boiss. & Heldr. (SEV289825). #573. ITALIY. Sardinia: Siniscola, Monte Albo, Gurturgius, 27 May 2022, A. Aparicio, RG Albaladejo & E. Rubio. H. croceum (Desf.) Pers. (SEV289818). #574. ITALY. Sardinia: Laconi, Borgata Pirastera, 28 Jun. 2022, A. Aparicio, RG Albaladejo & E. Rubio. H. morisianum Bertol. (SEV289831). #575. SWEEDEN. Vena: Vena, 18 Aug. 2020, B. Widén. H. nummularium (L.) Mill. subsp. nummularium (s.n.). #576. SWEEDEN. Segerstad: Öland, 14 Jul. 2019, B. Widén. H. oelandicum (L.) DC. subsp. oelandicum (s.n.). #615. SPAIN. Granada: Monachil, Trevenque, 22 Jun. 2022, J. Algarra. H. pannosum Boiss. (s.n.). #619. SPAIN. Jaen: Sierra Mágina, ex horto at Torre del Vinagre, 15 May 2022, S. García de Lucas. H. frigidulum Cuatrecasas (s.n.). #621. ALGERIA. Aïnt Temuchent: Madagh, 25 May 2022, M.D. Miara. H. origanifolium subsp. africanum B.Crespo, M.A.Alonso, A.Vicente & J.L.Villar (SEV289829). #641. ISRAEL. Judea: Judean Desert, 29 Apr. 2012, O. Friedmann. H. vesicarium Boiss. (ISRAEL GENE BANK 24853). #642. ISRAEL. Eilat: Upper Atek wadi, Golaniot gorge, 01 Jun. 2015, D. Carmeli. H. sancti-antoni Schweinf. (ISRAEL GENE BANK 26757). #643. KYRGYZSTAN. Krasnyy Most: Boom Gorge, western side of A365, between road and railway line and alongside track up side valley, 20 Jun. 2017, G.A. Lazkov. H. songaricum Zhao, Zhu & Cao (Millennium Seed Bank, Royal Herbarium 1042902). #644. JORDAN. Amman: Rumman Hill, the Botanic Garden site 1 km after the main entrace to the dam water, 18 Jun. 2005, J. Abilalia, Z. Tehabshem & M. van Slageren. H. ventosum Boiss. (Millennium Seed Bank, Royal Herbarium 278216). #645. TURKEY. Çankırı: upper parts of Çakmaklıdere valley, 18 Jul. 2022, M. Sezgin. H. germanicopolitanum Bornm. (s.n.). #646. TURKEY. Konya: Hadim, Alanözü road, Bademli Village, roadside, 17 Jul. 2022, D. Ulukuş. H. kostchyanum Boiss. (s.n.). #647. TURKEY. Adana: Arslantaş-Ayvat Village, mountain steppe, stony slopes, 11 Aug. 2022, D. Ulukuş. H. antitauricum Davis & Coode (s.n.). #648. TURKEY. Çankırı: İnandık-Çankırı, 45 km from Çankırı, gypsum slopes, 30 Jul. 2022, D. Ulukuş. H. germanicopolitanum Bornm. (s.n.).