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Abstract

Loureiro, J., Castro, M., Cerca de Oliveira, J., Mota, L. & Torices, R. 2013.
Genome size variation and polyploidy incidence in the alpine flora from
Spain. Anales Jard. Bot. Madrid 70(1): 39-47.

The interest to study genome evolution, in particular genome size varia-
tion and polyploid incidence, has increased in recent years. Still, only a few
studies have been focused at a community level. Of particular interest are
high mountain species, because of the high frequency of narrow endemics
and their higher susceptibility to extinction due to the effects of climate
change. In the present study we explored genome size variation and poly-
ploidy incidence in the entomophilous plant communities of two distinct
mountain ranges, the Sierra Nevada and Picos de Europa National Parks.
For that, chromosome numbers and DNA ploidies were assessed through
areview of the literature, and the genome size and incidence of polyploidy
in 39 taxa from several key genera were estimated using flow cytometry.
In this study, first genome size estimations are given for 32 taxa. The ma-
jority of the analyzed taxa presented very small to small genome sizes (2C
< 7.0 pg), with no differences being detected between genome size and
geographic origin and distribution ranges. A low incidence of polyploid
taxa was observed (23.3%), with polyploids being more common in Picos
de Europa than in Sierra Nevada. Most taxa inferred as polyploids were
high altitude plants, but no clear pattern between polyploidy incidence
and endemic status was observed. The obtained results are discussed
within the context of angiosperm’s genome size variation and of poly-
ploidy incidence in alpine and arctic flora, contributing to the scientific
knowledge of these natural communities of great biological importance.

Keywords: alpine vegetation, DNA ploidy level, nuclear DNA content, Pi-
cos de Europa, Sierra Nevada.

INTRODUCTION

The study of the genome size and its variation has been in-
creasingly important in many areas of plant research, includ-
ing taxonomy, biosystematics, ecology and population biolo-
gy. Nuclear DNA amount (C-value) has been referred as an
important biodiversity character, whose study provides a
strong unifying element in biology with practical and predic-
tive uses (Bennett & Leitch, 2005). Despite of the increase in
the number of genome size estimates over the years, no
records are still available for approximately 97.5% of the an-
giosperms (Bennett & Leitch, 2012). Still, the available data
for approximately 7500 species, already evidenced a large
variation in genome size, spanning nearly a 2500-fold range,
with Genlisea margaretae Hutch. (Lentibulariaceae, 1C =
0.06 pg; Greilhuber & al., 2006) and Paris japonica Franch.
(Melanthiaceae, 1C = 152.20 pg; Pellicer & al., 2010) repre-
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Resumen

Loureiro, J., Castro, M., Cerca de Oliveira, J., Mota, L. & Torices, R. 2013.
Variacién en el tamafo del genoma e incidencia de la poliploidia en la flo-
ra alpina espanola. Anales Jard. Bot. Madrid 70(1): 39-47 (en inglés).

Elinterés en el estudio de la evolucién del genoma, especialmente de la va-
riacion en tamafo y de la incidencia de poliploidia, se ha incrementado en
los Ultimos anos. Sin embargo, sélo unos pocos estudios se han centrado
en el nivel de comunidades. Las especies de alta montana son especial-
mente interesantes debido a la alta frecuencia de especies endémicas y a
que son consideradas muy susceptibles a la extincion por los efectos del
cambio climéatico. En el presente estudio, exploramos la variacion en el ta-
mano genémico y la incidencia de poliploidia en las comunidades de plan-
tas entomofilas de alta montafa de dos macizos montafiosos: el Parque
Nacional de Sierra Nevada y el Parque Nacional de Picos de Europa. Para
ello, se evalué el nimero de cromosomas y el nivel de ploidia por medio de
una revision bibliogréfica, mientras que el tamafo gendémico y la inciden-
cia de poliploidia se estimaron en 39 taxones de varios géneros usando ci-
tometria de flujo. En este estudio, se proporcionan las primeras estimacio-
nes del tamano gendmico para 32 taxones. La mayoria de los taxones ana-
lizados presentaron tamafos genémicos pequefios 0 muy pequenos (2C <
7.0 pg), sin mostrar diferencias en el tamafio gendémico asociadas a su ori-
gen geogréafico o rango de distribucion. Se observé una baja incidencia de
taxones poliploides (23.3%), siendo éstos mas comunes entre las plantas
de Picos de Europa que entre las de Sierra Nevada. La mayor parte de los
taxones considerados como poliploides fueron plantas restringidas a las
montafas, sin embargo no se observd un patrén claro entre la incidencia
de poliploidia y el grado de endemismo. Los resultados obtenidos son dis-
cutidos dentro del contexto de variacion en el tamafio del genomay de la
incidencia de poliploidia en las floras articas y alpinas, contribuyendo al co-
nocimiento cientifico de estas comunidades naturales de gran importancia
bioldgica.

Palabras clave: contenido nuclear de ADN, nivel de ploidia, Picos de Eu-
ropa, Sierra Nevada, vegetacién alpina.

senting the smallest and the largest genomes discovered so
far.

Genome evolution is now considered to be a highly dy-
namic process and its size results from a balance between ex-
pansion and contraction forces (increasing and decreasing its
size, respectively; Bennett & Leitch, 2005). In homoploid
plants (i.e., species with the same number of chromosomes),
genome expansion has been attributed to amplification and
insertion of transposable genetic elements (Ma & al., 2005;
Vitte & Bennetzen, 2006) and/or gain of chromosome re-
gions, such as tandem repeats (Lim & al., 2006). By other way,
genome contraction has been associated with deletional
mechanisms, such as, unequal intra-strand homologous re-
combination, illegitimate recombination and/or higher rate
of nucleotide deletion over insertion (Swigonova & al., 2005).

Another important mechanism responsible for rapid in-
creases in genome size is polyploidy. Indeed, the most recent
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estimations suggest that up to 100% of angiosperms have ex-
perienced one or more episodes of polyploidization during
their evolutionary history (Wood & al., 2009). Polyploids
arise most frequently by the fusion of unreduced gametes,
and may result either from the doubling of a single genome
(autopolyploidy) or by the combination of two or more dis-
tinct, yet related, genomes (allopolyploidy) (Grant, 1981).
Due to the possibility of immediate changes in the phenotype,
fitness and ecological tolerances of polyploid lineages in com-
parison with its diploid progenitors, polyploidization has
been proposed as a major mechanism of sympatric speciation
(Adams & Wendel, 2005), and might allow evolutionary tran-
sitions that would have been previously impossible (Comai,
2005; Hegarty & Hiscock, 2008). Thus, in a single genetic
event, polyploidy may produce a broad variation, increasing
the likelihood of coping with drastic environmental stress,
such as climate changes (Fawcett & Van de Peer, 2010).

Tt is generally considered that polyploids are more frequent
at higher latitude or altitude than related diploids (Petit &
Thompson, 1999). This pattern is based on two hypotheses:
first, polyploids might be more successful than diploids in
colonizing after glaciation (Brochmann & al., 2004); second
the last glacial maximum climate enforced range shifts that
might have led to the formation of hybrids of formerly al-
lopatric taxa, which subsequently suffered chromosome dou-
bling to restore fertility [secondary contact hypothesis of
Stebbins (1984)]. Indeed, alpine and arctic floras have been
reported to have high frequencies of polyploids (Abbott &
Brochmann, 2003; Brochmann & al., 2004; Nie & al., 2005).

In Europe, it has been forecasted that approximately 60%
of mountains species could go extinct because of their dis-
proportional sensitivity to climate change (Thuiller & al.,
2005). Furthermore, the greatest impacts are expected to oc-
cur in the transition between the Mediterranean and Euro-
Siberian regions (Thuiller & al., 2005), areas of high conser-
vation interest. As part of an ongoing project focused on the
study of pollination interactions in high mountain plants
(Santamaria & al., 2011a, b), in the present study we explored
genome size variation and polyploidy incidence on two dis-
tinct mountain ranges in Spain, placed in the Mediterranean
region and in its transition with the Euro-Siberian region, the
Sierra Nevada and Picos de Europa National Parks, respec-
tively. For that we: (i) compiled chromosome numbers and
DNA ploidy level through an exhaustive review of the biblio-
graphic literature; and (ii) estimated the genome size and in-
cidence of polyploidy in a diverse array of taxa from several
key genera of the entomophilous plant community. Consider-
ing that polyploid individuals may have higher colonization
success after glacial periods than their diploid progenitors
(Brochmann & al., 2004), we expect that the high mountain
communities studied will show a high frequency of poly-
ploids.

MATERIAL AND METHODS

Plant material and study sites

We explored some genome traits in two high mountain
plant communities from two distinct mountain ranges. Both
communities were characterized by growing above the tree

line (altitudinal tree limit). In the Picos de Europa National
Park, we surveyed the plant community in the “Jou de los
Cabrones” at 2050 m a.s.l. (43°12'50.60" N, 4°51'27.08 W);
whereas in the Sierra Nevada National Park plants were sam-
pled in the “Borreguil de San Juan” at 2900 m a.s.1.(37° 04'
19.88 N;3°22'26.13 W). We collected plant samples from 39
taxa (as for species or infraspecific categories): 23 from Picos
de Europa, and 16 from Sierra Nevada (Table 1). Field col-
lections were carried out during the flowering season (July to
August) of the studied taxa. In each site, leaves from up to 50
individuals were collected randomly and stored in plastic
bags. During sample transportation into the laboratory, sam-
ples were kept in cold conditions and after arrival they were
maintained at 4 °C until use (up to three days). All plant ma-
terial was identified to species or subspecies level with the
exception of one taxon belonging to the genus Hieracium.
Given the problems associated with Hieracium taxonomy
and, in particular, with the endemic species from Cantabrian
range (Mateo Sanz, 1996) we used the broader group of Hie-
racium gr. mixtum for referring to the collected material of
this genus. Voucher specimens were collected and are avai-
lable through the Herbarium of the University of Coimbra
(COD).

Data on species distribution, in particular if the studied
taxa were distributed only in mountain areas (nzountain spe-
cialist) or widely distributed, and if they were endemic either
to Sierra Nevada or Picos de Europa mountain ranges or not
were acquired using Flora iberica (Castroviejo & al., 1986-
2012), Flora Vascular de Andalucia Oriental (Blanca & al.,
2001), Anthos (Aedo & Castroviejo, 2005) and the Global
Biodiversity Information Facility (http://data.gbif.org; http:
//data.gbif.org). For Picos de Europa community, we also
considered as narrow endemics those plants that were dis-
tributed in both Picos de Europa and Pyrenees, such as Mz
nuartia villarsii, and Saxifraga hirsuta subsp. paucicrenata.

Genome size estimations

Genome size was estimated using flow cytometry following
the method of Galbraith & al. (1983). In brief, approximate-
ly 50 mg of leaves of the sample species and of the internal ref-
erence standard were chopped with a razor blade in a glass
Petri dish containing 1 mL of WPB buffer (0.2 M Tris. HCI,
4 mM MgCL.6H.O, 1% Triton X-100, 2 mM EDTA Na..
2H.0, 86 mM NaCl, 10 mM metabisulfite, 1% PVP-10, pH
adjusted to 7.5 and stored at 4 °C; Loureiro & al., 2007). Nu-
clear suspensions were then filtered through an 50 pm nylon
filter and 50 pg.mL" of propidium iodide (PI, Fluka, Buchs,
Switzerland) and 50 pg.mL"'of RNAse (Fluka, Buchs,
Switzerland) were added to sample tubes to stain the DNA
and avoid staining of double stranded RNA, respectively.
Samples were kept at room temperature and were analyzed
within a 5 min period in a Partec CyFlow Space flow cytome-
ter (Partec GmbH, Gorlitz, Germany) equipped with a 532
nm green solid-state laser, operating at 30 mW. Integral fluo-
rescence and fluorescence height and width emitted from nu-
clei were collected through a 620 nm band-pass interference
filter. After the analysis of the first sample of each taxon, the
amplifier system was set to a constant voltage and gain. Each
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day, prior to analysis, the overall instrument quality was as-
sessed using PI stained nuclei of Pisumz sativum L. ‘Ctirad’.

Relative fluorescence intensity (FL) histograms were ob-
tained and evaluated using FloMax software v2.5 (Partec
GmbH, Miinster, Germany). Furthermore, FL vs. time and
FL vs. side light scatter in logarithmic scale cytograms were
also obtained. In the latter cytogram, a region of interest com-
prising mostly the isolated nuclei was defined. The FL his-
togram in linear scale was gated with this region. At least
1,500 nuclei in both sample’s and standard’s G peaks were
analyzed per sample (Suda & al., 2007).

For each taxon, ploidy level and genome size was obtained
for 5 (rarely 3) individuals. For the remaining individuals,
only ploidy level information was gathered as the pooled sam-
ples strategy was followed. This strategy consisted of analyz-
ing the leaf tissue of up to 5 individuals plus the reference
standard at the same time. If multiple peaks arose, samples
were repeated to determine exactly how many individuals
with different ploidy level were present in the pooled sample.

The holoploid genome size in pg (2C; sensu Greilhuber &
al., 2005) of each individual was estimated using the following
formula:

GS= G/ G x GS,

where GS, and GS; are the genome size of sample and refe-
rence nuclei respectively, and Gi. and Gy, are the mean G; fluo-
rescence of sample and reference nuclei respectively.

The following reference standards were grown from seeds:
Raphanus sativus L. ‘Saxa’ (2C = 1.11 pg; DolezZel & al., 1998);
Solanum lycopersicon L. ‘Stupické’ (2C = 1.96 pg; DoleZel &
al., 1992); Pisum sativum ‘Ctirad’ (2C = 9.09 pg; Dolezel &
al., 1998); Vicia faba L. ‘Inovec’ (2C = 26.90 pg; Dolezel &
al., 1992). Seeds were sown in plastic pots filed with com-
mercial peat and pots were kept in a climate chamber ope-
rating at 20 + 2 °C, with a photoperiod of 16h/8h (light/dark)
and a light intensity of 530 + 2 pnE/m?/s.

DNA ploidy level estimations

In order to estimate the DNA ploidy level (sezzsz Suda &
al., 2006) an extensive bibliographic review on the known
ploidy levels, chromosome counts, basic chromosome num-
ber and genome size of the studied taxa was performed. For
chromosome counts the following bibliography and online
databases were mostly used: Index of Plant Chromosome
Numbers (Goldblatt & Johnson, 1976-), Flora iberica (Cas-
troviejo & al., 1986-2012), Anthos (Aedo & Castroviejo,
2005). For genome size information, the Plant DNA C-values
Database (Bennett & Leitch, 2010) and GSAD, a genome size
database in the Asteraceae (Garnatje & al., 2010) were the
main sources of information.

Statistical analyses

We analyzed statistical differences in genomic traits be-
tween widespread vs. mountain specialized plants, endemic
vs. non-endemic for each plant community, and between
both studied communities using the non-parametric Wil-
coxon test (Quinn & Keough, 2002). All analyses were per-
formed with JMP 9.0 software.

RESULTS AND DISCUSSION

The interest to study genome size and its significance has
been increasing in recent years, mostly due to the emergence
of flow cytometry (Loureiro & al., 2008), with many studies
having used this character not only as a taxonomic marker,
but also to evaluate how it correlates with phenotypic, eco-
logical and environmental variables (e.g., Grime & Mow-
forth, 1982; Knight & Ackerly, 2002; Beaulieu & al., 2007;
Knight & Beaulieu, 2008; for a review see Greilhuber &
Leitch, 2013). So far, only a few studies have focused in study-
ing this character at a natural community level, with the study
of genome size variation in endemic genera of Macaronesia
being one of the few exceptions of such an approach (Suda &
al., 2003; Suda & al., 2005). Regarding the variation in chro-
mosome numbers, due to the large amount of data obtained
using classical karyology over the last 70 years, and the read-
ability of the information in several web databases (e.g., Index
of Plant Chromosome Numbers, Goldblatt & Johnson, 1976-)
it is easier to find studies evaluating the incidence of poly-
ploidy in particular communities, as the alpine flora (e.g., Nie
& al., 2005). Still, most of those studies are based in biblio-
graphic reviews, only. In here, besides an extensive review of
the literature, we explored the variation in genome size and
ploidy level of entomophilous taxa from two natural commu-
nities of high altitude.

Genome size variation

In the present work, the genome size of a total number of
191 individuals from 39 taxa was estimated (Table 1). From
these, 32 (86.5%) constitute first estimations of genome size.
With the exception of a few taxa (Glandora diffusa, Reseda
complicata, Scilla verna, Scorzoneroides microcephala, Silene
rupestris and Viola riviniana) the coefficient of variation (CV)
of G, peaks were below 5% (Fig. 1). In these taxa, the high
amounts of cytosolic compounds did not enable to achieve
such CV values, and thus a higher CV threshold was consid-
ered acceptable (8%).

Among the studied species, a genome size variation of
39.2-fold was found (Fig. 2A), with the lowest mean value be-
ing obtained for Pritzelago alpina (2C = 0.36 + 0.01 pg),
whereas the highest one was obtained for Scilla verna (2C =
14.11 + 0.27 pg). Regardless of this variation, according to
Leitch & al. (1998) most of the estimations (56.4 %) fell in the
very small genome category (2C < 2.8 pg), whereas 25.6%
and 17.9% of the taxa presented small (2.8 pg <2C <7.0 pg)
and intermediate genome sizes (7.0 pg < 2C < 28.0 pg), re-
spectively. No species with large and very large genome sizes
were detected. The overall genome size variation observed in
the sampled taxa fits well with the distribution of C-values in
angiosperms (Leitch & Leitch, 2013), which despite present-
ing a much larger range of variation (2342-fold for 6287 an-
giosperms), it is also strongly skewed towards very small and
small genome sizes.

Most of the families to which the sampled taxa belong are
well represented in the plant DNA C-values database (Ben-
nett & Leitch, 2010). Nevertheless, for five families, there is a
poor representation at the genus or species level, with estima-
tions of genome size being available for 1-3 taxa only. Thus,
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Table 1. (Continuation).

Mountain R.e.

H.v.

Previous

G.s. total

estimations

S.

R.

Genome size (pg/2C)

DNA ploidy level

Montain

Species

Family

SD CV (%)

0.28
0.20
0.05
0.05
0.07

Mean

Ploidy level

2n
20, 22

range

N
Y
Y
Y
Y

RT41

5
25

AR

2.0
2.1

14.11

2x

10, 11

Scilla verna Huds.

Liliaceae

PE
SN
SN

RT18

V.£.

9.39
8.97
10.73
7.37

2x

18
16
16
16

9

Plumbaginaceae Armeria splendens (Lag. & Rodr.) Webb

Ranunculaceae
Ranunculaceae
Ranunculaceae

RT14

49

Sl

0.5

2x

Ranunculus acetosellifolius Boiss.

Ranunculus demissus DC.

RTO5

50
5

P.s.

0.5

2x

SN

RT50

5

7.43-7.63 (2x),
15.09-15.85(4x),

P.s.

1.0

2x

Ranunculus parnassifolius L.

PE

subsp. heterocarpus P.Klpfer

20.45 (5%

Y
Y
N
Y
Y

RT23

50
5
3

8
5

Sl

2.6
0.9

0.03
0.03
0.01
0.02
0.06

1.36
3.69
0.52

2x

28

14

Reseda complicata Bory

Resedaceae
Rosaceae

SN
PE
PE

RT39

R.s.

Alchemilla plicata Buser

RT52

Sl

1.1
1.9
1.9

2x

14,16

7,8
14

14

Thesium pyrenaicum Pourr.

Santalaceae

RT48
RT49

Sl

1.31
3.21

Saxifraga conifer Coss. & Durieu 42 6x

Saxifragaceae
Saxifragaceae

R.s.

2x

28

Saxifraga hirsuta L. subsp. paucicrenata

(Leresche ex Gillot) D.A.Webb

Saxifraga oppositifolia L.

Y

RT55

5

Sl

0.06 1.9

2x, 4x 2.93

28,52

14

Saxifragaceae

PE

subsp. oppositifolia L.
Saxifraga paniculata Mill.

Y
Y
N

RT44
RTO4
RT54

5
50
5

R.s.

1.3
1.6
3.0

0.04
0.03
0.03

3.20

2x

28
44
20

14

Saxifragaceae
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Sl

1.70
1.13

4x

Scrophulariaceae Euphrasia willkommii Freyn

Violaceae

SN
PE

2.55-2.97 (4x)* 5

Sl

2x

10

Viola riviniana Rchb.

our estimations for the two species of Sideritis (1.96 pg/2C)
constitute the lowest values so far for this family (Lamiaceae,
2.88-12.30 pg/2C). By contrast, the estimation obtained for
Reseda complicata (1.36 pg/2C), is the highest for Resedaceae
(0.70-1.02 pg/2C). The values obtained for Thesium pyre-
naicum, Viola riviniana and Saxifraga spp. (0.52; 1.13; 3.21
and 2.93 pg/2C, respectively) are within the range already ob-
served in the few estimations of Santalaceae (0.58-0.62
pg/2C), Violaceae (2.61-2.70 pg/2C) and Saxifragaceae (1.35-
4.76 pg/2C), respectively.

For the seven taxa whose genome size had been estimated
before, a good agreement with previous results was observed,
with the exception of Lotus corniculatus and Viola riviniana.
Regarding L. corniculatus, we studied two different sub-
species: for L. corniculatus subsp. glacialis, our estimation fits
well in the variation reported for the diploids of this species
(Marie & Brown, 1993), whereas for L. corniculatus subsp.
corniculatus, considering the reported values for diploids and
tetraploids of this species (Bennett & Smith, 1976), our esti-
mations fall in the middle of the variation reported so far, sug-
gesting the presence of DNA triploid individuals with 18
chromosomes; still as no infra-specific categorization was giv-
en in those works, this assumption should be confirmed in the
future using classical karyology. For V. riviniana, despite of
the difficulty to obtain histograms with low CV values, our es-
timation is approximately half that observed before for
tetraploid individuals (Cires & al., 2011), which suggests that
the sampled individuals are diploid with 20 chromosomes.
Despite diploids have never been reported for this species,
there are previous evidence of some variability in the number
of chromosomes (2n = 35, 40, 45, 46, 47 chromosomes; Cires
& al., 2011).

As reported before for several genera (e.g., Helleborus spp.
and Carthamus spp., Zonneveld, 2001; Garnatje & al., 2006,
respectively) and further confirmed in here (e.g., Minuartia
spp., Ranunculus spp.) genome size can be an important ex-
tra taxonomic character for separating species, and potential-
ly in the case of homoploids. In our work, when taxa of the
same genus were analyzed, in most of the cases, it was possi-
ble to distinguish them using the genome size estimations,
even when the supposed number of chromosomes was the
same (e.g., Ranunculus spp., all with 16 chromosomes). This
information can be particularly important for the identifica-
tion of the two analyzed species of Minuartia, as they are very
difficult to distinguish in the field. Still in the case of Sider:tis
glacialis and S. hyssopifolia and in the two taxa of Saxifraga
with the same chromosome number (S. hzrsuta subsp. pauci-
crenata and S. paniculata), the genome size was very similar,
and thus, a not so useful character to distinguish those taxa.
Considering the reported variability in chromosome num-
bers in §. hyssopifolia and its lack in S. glacialis, our results
suggest for the occurrence of the same number of chromo-
somes in both species, i.e., 2n = 2x = 34. In all species, except
Hieracium gr. mixtum and Glandora diffusa, a CV of genome
size estimations below 3 % was obtained, suggesting the ab-
sence of intraspecific variation in genome size in most of the
taxa.
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Fig. 1. lllustrative flow cytometric histograms of relative Pl fluorescence intensity obtained after simultaneous analysis of nuclei isolated from the sampled
taxa and the internal reference standard: (a) Pritzelago alpina with the occurrence of endoreduplication, and Raphanus sativus; (b) Minuartia verna and
Solanum lycopersicum; (c) Scilla verna and Vicia faba. In each histogram, information of mean channel number (mean), DNA index (DI, defined as the ra-
tio between the mean channel number of sample and reference standard) and coefficients of variation (CV, %) of each DNA peak are given. Please note
the overall good quality of the histograms, as defined by the CV of each peak and by the low amount of background debris.

Polyploidy incidence

The DNA ploidy level of extra 526 individuals was esti-
mated using the pooled sample strategy. For 30 out of 39 taxa,
it was possible to infer the DNA ploidy level (Table 1), either
using the information available in the chromosome databases
or by comparison with previous genome size estimates. Of
these taxa, seven were unequivocally polyploid: one potential
triploid (Lotus corniculatus subsp. corniculatus), five tetra-
ploids (Cerastium arvense, Erysimunm: duriaet, Euphrasia will-
kommit, Jasione crispa subsp. tristis, Paronychia kapela subsp.
serpyllifolia) and one hexaploid (Saxifraga conifera), repre-
senting a polyploidy incidence of 23.3 %, irrespective of the
mountain range.

Polyploidy is thought to influence the capacity to tolerate
environmental stress (Fawcett & Van de Peer, 2010) and may
have granted some plant species a higher capacity to colonize
new habitats after glaciation (Brochmann & al., 2004). Alto-
gether, these beneficial traits have led to the assumption that
polyploids are more frequent at higher latitude or altitude
than related diploids (Love & Love, 1949; Love & Love,
1967). Indeed, some of these assumptions were confirmed re-
cently when Brochmann & al. (2004) analyzed the incidence
of polyploidy in the circumarctic flora. The authors observed
that 60.7% of the artic plants are polyploids, with the fre-
quency and level of polyploidy strongly increasing north-
wards within the Arctic. The evolutionary success of poly-
ploids might be related with their fixed-heterozygous
genomes, which buffered against inbreeding and genetic drift
through periods of dramatic climate change. Regarding the
incidence of polyploidy in alpine regions, only a few studies
have addressed this issue. Love & Love (1967) observed a sig-
nificantly high rate of polyploids in the alpine zone of the Mt.
Washington (63.6%); also, Morton (1993) revealed an inci-
dence of 52.9% in the flora of the Cameroon Mountains. By
contrast, in the flora of the Hengduan Mountains, only 22%
of the analyzed taxa were polyploids (Nie & al., 2005). Re-
cently, Vamosi & McEwen (2012), observed that in the
British Columbia flora (Canada) polyploids (especially those
of hybrid origin) are disproportionately present at high eleva-
tion; still, no strong evidence that polyploids were tolerant of

extreme or more varied environments than their diploid pro-
genitors was found. The authors also found that mostly hy-
brids, some of which allopolyploids, had an increased eleva-
tional range, suggesting that the production of novel pheno-
types, as well as, a wider range of allelic diversity, rather than
masking of deleterious mutations, are a more important fac-
tor determining range limits of species. In our case, indepen-
dently of the mountain range, an incidence of polyploidy of
23% was observed, which may be a first indication that this
phenomoneon may have not been as important in shaping
species adaptation to the alpine areas in these two distinct
Spanish mountain ranges, as in other areas with extreme envi-
ronment. Still, it was interesting to notice that even with such
small dataset, five out of the seven polyploid taxa that were
sampled are geographically restricted to high mountain areas.

Also, considering that polyploidization has long been recog-
nized as a rapid mechanism of sympatric speciation (Adams &
Wendel, 2005), it could help to explain rapid diversification
and high endemism in a given region with high biodiversity. In
some way, this contrasts with the idea that polyploids are gen-
erally considered to have a more widespread distribution than
their related diploids, as a result of a higher capacity (due to
successive hybridizations among differentiated polyploid pop-
ulations) to colonize new environments after the retreat of
Quaternary glaciers (Hodgson, 1987; Petit & Thompson,
1999). Indeed, as referred above, in the Hengduan Mountains
polyploidy may have played a minor role, only, with geographi-
cal and ecological heterogeneity being considered to have
played a more important role in the diversification of the
plants of this region (Nie & al., 2005). Also, Petit & Thompson
(1999) in the flora of the Pyrenees evaluated the relation be-
tween ploidy level, species diversity and ecological range, and
observed that ploidy level had significant effects on the taxo-
nomic diversity of the 50 genera studied, but not directly in the
ecological range of genera. In Macaronesia, Atlantic islands
with a complex and diverse flora and a high incidence of en-
demism, a very low incidence of polyploidy was repeatedly re-
ported, with only 26.6% of the endemics and 27.8% of the to-
tal plants being polyploids (Borgen, 1974).

Within each taxon, we only found variation in ploidy level
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Fig. 2. Distribution of the genome size estimations among 39 high mountain taxa (a; black bars: Picos de Europa; grey bars: Sierra Nevada and compar-
isons of genome size variation (mean and SD, 2C/pg) between Picos de Europa (PE) and Sierra Nevada (SN) taxa (b), between plants specialized to live in
mountain areas and those widely distributed (c), and between taxa endemic to restricted mountain ranges (Endemic) and not restricted (Non-endemic) (d).

once, with diploid and tetraploid individuals of Paronychia
kapela subsp. serpyllifolia being detected in Picos de Europa.
Both ploidy levels have already been reported for this sub-
species, but no reference has been made regarding their oc-
currence in the same population (Kiipfer, 1974). As shown
before for other taxa (e.g., Aster amellus, Castro & al., 2012),
contact zones of different cytotypes are very important as they
constitute natural laboratories for studying evolutionary tran-
sitions in flowering plants (Lexer & van Loo, 2006). There-
fore, future large and fine scale studies of cytotype distribu-
tion are necessary to improve the understanding of the evolu-
tionary dynamics of the contact zone between diploids and
tetraploids of P. kapella subsp. serpyllifolia.

Genome size, polyploidy, geographic origin

and distribution ranges

The surveyed communities did not show statistical diffe-
rences in genome size (Wilcoxon Test: x; = 0.019, P = 0.890,
Fig. 2B). Genome sizes from Picos de Europa plants ranged
from 0.36 +0.01 (Pritzelago alpina) to 14.11 £ 0.27 pg/2C (Scil-
la verna); whereas plants from Sierra Nevada ranged from 0.64
+ 0.01 pg (Sedum melanantherum) to 10.73 + 0.05 pg/2C (Ra-
nunculus demissus). Mountain specialists did not show signifi-
cantly different genome sizes from those more widely dis-
tributed (Wilcoxon Test: x; = 0.299, P = 0.584, Fig. 2C). Fur-
thermore, 13 of the species were narrow endemics and were
mainly restricted to Sierra Nevada (Table 1). However, these
endemic plants did not show different genome size than non-
endemic ones (Wilcoxon Test: x; = 0.044, P = 0.835, Fig. 2D).

Regarding polyploidy, a higher frequency of polyploid ta-
xa was observed in Picos de Europa than in Sierra Nevada
(33.3% vs. 13.3%). Also, it is interesting to notice that most
taxa inferred as polyploids were high altitude plants, except
for Cerastium arvense and Lotus corniculatus subsp. cornicula-
tus that can also grow in lowlands. The evaluation of poly-
ploidy in endemic vs. non endemic plants, revealed a similar
frequency of polyploids (23 %); still, the two unique endemic
species to the Cantabrian Range sampled in this study were
polyploid (Erysimum duriaei and Saxifraga conifera). By con-
trast, from the eight sampled taxa endemic to Sierra Nevada,
only one, Jasione crispa subsp. tristis, was polyploid, which re-
flects a percentage similar to the global incidence observed
for this mountain area (12.5%).

Recent phylogenetic studies have evidenced multiple di-
versification patterns of alpine plants (Vargas, 2003). In the
particular case of the two high mountain regions studied in
here, there are already some examples where colonization and
differentiation occurred from southeast Iberian Mountains to
the Pyrenees (e.g., Saxifraga pentadactylis Lapeyr., Arenaria
tetraquetra L.; Vargas, 2003). In the case of A. tetraguetra, the
colonization and differentiation was accompanied with an in-
creasing number of chromosome complements, with diploids
being found in Sierra Nevada (subsp. azabilis). Still, molecu-
lar data in other plant groups also revealed that, in contrast to
northern European areas where large-scale migrations oc-
curred to recolonize territories after glacial periods, species in
southern regions survived and diverged without large geo-
graphical displacements. The observed species range shift
mostly involved populations ascending or descending moun-
tains (Feliner, 2011). In our case, considering the differences
between both mountain ranges in polyploidy incidence, it
seems that, at least for the analyzed species of Sierra Nevada,
either polyploidy was not involved in the short-distance ex-
pansion occurred after glaciation, or, as hypothesized for
Armeria splendens (Larena & al., 2002), those taxa constitute
the first inhabitants in Sierra Nevada, which despite the
events of gene flow and hybridization with taxa from lower al-
titude during climatic changes in the Pleistocene (eventually
leading to the formation of polyploid taxa that subsequently
expanded to other areas), survived and lasted in high altitude
refugia until the present time.
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