Epilithic diatoms (*Bacillariophyceae*) from running waters in NW Iberian Peninsula (Galicia, Spain)

Manel Leira¹,², María del Carmen López-Rodríguez² & Rafael Carballeira³

¹Laboratório associado IDL, Faculdade de Ciencias, Universidade de Lisboa, 1749–016 Lisbon, Portugal
²³Department of Botany, Biology Faculty, University of Santiago de Compostela, 15076 Santiago de Compostela, Spain

Abstract. A catalog of *Bacillariophyceae* for the rivers of NW of Spain is made for the first time. It includes a re-examination of the taxa reported in previous publications, taxa cited during the last years of the rivers of the Galicia-Costa Hydrographic Demarcation, and a revision of the taxonomy, in line with the systematic and nomenclature changes, which have occurred mainly in recent years. The epilithic diatoms of the river basins of Galicia-Costa were sampled during the years 2005, 2006, and 2007, in May-June and September. The study was carried out in 41 localities distributed along 31 rivers, samples were taken in upstream and downstream sections. Diatom communities were compared in all upstream sections of these rivers draining from siliceous substrates. We identified 141 taxa of diatoms from the coast of Galicia. In this paper we present 15 new citations for Galicia, two for Spain and three for the Iberian Peninsula, in addition to a new species recently described. The dominant taxa are: *Achnanthidium minutissimum*, *Achnanthes subhudsonis*, *Karayevia oblongella*, *Cocconeis placenta* var. *euglypta*, *Gomphonema rhombicum*, and *Navicula minima*. *Achnanthes subhudsonis* was the most abundant species during the spring and summer months. The remaining species showed no relevant changes regardless of the time of year. The results indicate that the river diatoms of Galicia are an important component of the diversity of the ecosystem.

Keywords. *Bacillariophyceae*, diatoms, Galicia, rivers, Spain, streams.

Title in Spanish: Diatomeas epilíticas (*Bacillariophyceae*) de los cursos de agua corriente del NO de la península ibérica (Galicia, España). Received: 19–VI–2015; accepted: 29–I–2016; published online: 1-XII-2017; Associate Editor: A. Flores.

INTRODUCTION

Despite the fair and extensive floristic and taxonomic knowledge on the European freshwater diatoms, the diatom flora of the Iberian Peninsula is rather poorly known. The freshwater diatoms of Galicia —NW Spain— have never been thoroughly investigated and there are few works related to some selected localities. The first floristic studies on freshwater diatoms in the region date back to the first half of the 20th century (Gamundi 1911) followed, already during the 50’s, by those of Margalef (1955, 1956). Later, Varela (1976, 1982) made a major contribution, described several taxa with newer data, and published the only freshwater diatom catalogue of Galicia to the date (Varela & al. 1992). The last taxonomic studies of the diatom flora of Galicia have been published as restricted technical reports on water quality studies in lotic water systems (v.gr., Ector 1992; Penalta-Rodríguez & López-Rodríguez 2006; Delgado & al. 2010). Recently, a floristic account has been carried out in small upland streams from two zones catalogued as “site of communitarian importance” proposed by the local government in the Habitats Directive —92/43/EEC— of the Nature 2000 Network (López-Rodríguez & Penalta-Rodríguez 2007; Penalta-Rodríguez & López-Rodríguez 2007). Other more ecologically or paleoecologically orientated publications...
include Bao & al. (2007). However, despite this growing number of diatom studies in this area, the freshwater diatom flora of Galicia remains rather poorly known. Under these circumstances there is still a need of collecting more data on their distribution and ecological preferences.

This paper reports the results of a systematic survey of the diatom assemblages in Galicia —NW Spain—. The paper describes diatoms collected from running waters in rivers and streams of the Galicia-Costa basin. The study has three main goals: 1) to present a floristic catalogue of the freshwater diatoms living in the rivers of the study area; 2) to provide data on their distribution and autoecology; and 3) to give descriptions of unusual taxa.

MATERIAL AND METHODS

Study Area

Galicia is located in the NW of Iberian Peninsular, situated in a transitory zone between the Atlantic and Mediterranean regions under an oceanic climate (fig. 1). The geology is dominated by siliceous rocks: granite in the west and metamorphic rocks in the east. The topography of the area consists mainly of granite rocks, where hills alternate with valleys. The mountain ranges are of low altitude —between 800 and 1,000 m a.s.l.—. The Galician relief is complex and clearly characterised by the presence of steep slopes.

One of the key elements of the Galician landscape is the existence of a large and dense river network controlled by climate and tectonic and the morphological configuration. Galicia-Costa has mild winters and cool summers with precipitation exceeding 1,500 mm per year while well distributed throughout the year. As a result most of the Galician rivers have an Atlantic or oceanic climate characterized by an abundant and regular flow, with high waters in winter and a moderate drought in the summer. The mountainous geomorphology and regular precipitation influences the occurrence and permanence of many small and medium-sized rivers with regular discharge throughout the year.

The river systems occurring within the area of Galicia-Costa include all Galician river basins that flow into the Bay of Biscay and to the Atlantic Ocean. The rivers of the Bay of Biscay slope flow to the north. These rivers are short with steep gradients. These rivers undergo an oceanic climate with a reduced variation in annual temperature and rain patterns. The Atlantic slope comprises all the rivers flowing west to the Atlantic Ocean. These rivers show a higher environmental and spatial variability, with two groups easily differentiated: the rivers of the Arco Ártabro-Fisterra and the rivers of the Rias Baixas. The proximity

Fig. 1. Map of Galicia sampling sites studied. Sites numbered from 1 to 34 are those included within the Galicia-Costa basins (HDGC). The Macizo Central Gallego (MCG) localities are numbered from 35 to 41.

of the mountains to the coast and the oceanic climate of the basins of the Arco Ártabro-Fisterra make all rivers in this area short and quite fast flowing, although they have a summer drought more pronounced than those of the Bay of Biscay. The Rías Baixas rivers are subject to significant Mediterranean influences and undergo severe droughts during summer months.

Sample Collection

This study was carried out in 41 localities (fig. 1) distributed along 28 rivers in the Galicia-Costa River District. The study has been completed with samples from seven high altitude sites from the mountain ranges of the Macizo Central Gallego (MCG), located in the SE of the studied area. The rivers have been grouped in the five different geographical areas described above according to their drainage basin.

Temperature, pH, conductivity, and dissolved oxygen were measured in situ in each locality with a HANNA HI 9024C microcomputer pH-meter, a HANNA HI 9033 multi-range conductivity meter and a CRISON oxi 45 oxymeter. The water samples for chemical analyses were collected into polypropylene bottles and transported chilled to the laboratory. Water chemistry analyses were carried out at the Department of Physical Chemistry —USC— and included: temperature —°C—, pH, potassium —mg L⁻¹—, magnesium —mg L⁻¹—, manganese —mg L⁻¹—, chloride —mg L⁻¹—, sulphate —mg L⁻¹—, ammonium —mg L⁻¹—, conductivity —µS cm⁻¹— at 20 ºC—, nitrates —mg L⁻¹—, nitrites —mg L⁻¹—, phosphates —mg L⁻¹—, dissolved oxygen —mg L⁻¹—, TOC (mg L⁻¹), BOD5, suspended solids —mg L⁻¹—, conductivity —µS cm⁻¹—, turbidity —NTU; nephelometric turbidity units—, and alkalinity —mEq L⁻¹—. Standard methods for chemical water analysis were carried out following American Public Health Association (APHA 1998).

Localities were sampled between 2002 and 2007 at different moments of the year but more frequently at the end of spring and summer. Diatoms were collected with a brush, from medium-size stones chosen from well lightened and flowing streams. Samples were preserved in a cool-box in the field, until being carried to the laboratory. Diatoms frustules were cleaned with 30% H₂O₂ in hot during 6–7 h. The cleaned frustules were mounted on glass-slides using Naphrax® (CEN 2003, 2004). Identification of the species was carried using an Olympus BX61 microscope equipped with differential interference contrast —DIC, Nomarski— under 1,000× magnification. A minimum of 400 valves were counted whenever possible. In most cases diatoms were identified to the species level following standard literature (Krammer & Lange-Bertalot 1985, 1988, 1991a, 1991b) supplemented by more specific works (Krammer 1997a, 1997b, 2000, 2002, 2003; Lange-Bertalot & Metzeltin 1996; Lange-Bertalot 1999, 2001; Lange-Bertalot & Krammer 1989; Reichardt 1999; Lange-Bertalot & al. 2011). Additionally, previous references for the Iberian Peninsula were checked after Aboal & al. (2003). Information about the global distribution and taxonomic status of species recorded during the survey was taken from AlgaeBase (Guiry & Guiry 2015).

Weighted averaging regression and calibration were performed to calculate pH, conductivity, nitrates and phosphates optima of diatom species using the computer program C2 (Juggins 2014). Estimates of optima were assessed comparing the root mean square of prediction —RMSE— and the bootstrap RMSE.

RESULTS AND DISCUSSION

Characteristics of studied localities are given in table 1: temperature —°C—, pH, conductivity —µS cm⁻¹—, dissolved oxygen —mg L⁻¹—, water hardness —mg CO₂ Ca·L⁻¹—, and catchment area. The majority of the study sites were situated below 20 m a.s.l., and eight sites occurred between 200–350 m a.s.l. Water temperature ranged from 13.3 ºC to 22.4 ºC among sites within the same sampling season. On average, water temperature varied between 13–20.1 ºC across sites regardless of their altitude. pH values varied slightly between 6.2 and 7.6. Ten sites showed slightly acidic conditions with a mean pH between 6.2 and 6.9. Conductivity values ranged from 35 to 457 µS cm⁻¹, with only two localities with values above 200 µS cm⁻¹. Sites are typically acidic with low alkalinity levels.

Results of the diatom analysis are divided into three parts. First, we provide a narrative on some taxa and their distribution to examine relationships between the occurrences of diatom taxa. Second, we establish a provisional taxon checklist for Galicia freshwater diatoms. Finally we give an account of unusual taxa with distribution restricted mostly to Galicia or northwest Iberia.

Galicia river diatoms are a diverse component of the ecosystem, although very distinctive of the Iberian Peninsula diatom flora. Compared with some other geographically and climatically similar areas in northern Spain, Galician running waters are quite distinctive. The geology in the Galician coastal area is homogeneously siliceous, thus rivers and streams are characteristically softwater. Consequently, diatom taxa characteristic of acidic waters were usually well-represented in Galician rivers (table 2). Taxa belonging to the genus *Eunotia* together with *Navicula angusta*, *Peronia fibula*, and *Surirella roba* were common components of the diatom community throughout all the studied area, although in low numbers.

<table>
<thead>
<tr>
<th>CODE</th>
<th>RIVER</th>
<th>LOCALITY</th>
<th>COORDINATES</th>
<th>T°</th>
<th>PH</th>
<th>CONDUCTIVITY</th>
<th>O₂</th>
<th>HARDNESS</th>
<th>DRAINAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MASMA</td>
<td>MASMA</td>
<td>290634761 4815296</td>
<td>16.1</td>
<td>7.6</td>
<td>147.9</td>
<td>9.6</td>
<td>53.2</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>OURO</td>
<td>S ACISCLO</td>
<td>290631412 4824765</td>
<td>15.9</td>
<td>7.0</td>
<td>93.3</td>
<td>9.6</td>
<td>18.7</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>LANDRO</td>
<td>NASEIROS</td>
<td>290613811 4830530</td>
<td>15.6</td>
<td>6.8</td>
<td>69.9</td>
<td>10.0</td>
<td>11.4</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>SOR</td>
<td>COTO RIBEIRAS</td>
<td>290605538 4835129</td>
<td>16.3</td>
<td>6.6</td>
<td>66.8</td>
<td>9.9</td>
<td>10.4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>MERA</td>
<td>MERA DE ABAIXO</td>
<td>290588129 4832636</td>
<td>15.1</td>
<td>7.3</td>
<td>123.5</td>
<td>10.1</td>
<td>38.3</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>FORCADAS</td>
<td>VILABOA</td>
<td>290576983 4826378</td>
<td>19.8</td>
<td>7.4</td>
<td>109.9</td>
<td>9.0</td>
<td>28.2</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>XUBIA</td>
<td>S. SADURNIÑO</td>
<td>290573708 4808503</td>
<td>15.8</td>
<td>7.4</td>
<td>153.2</td>
<td>9.3</td>
<td>41.3</td>
<td>AAF</td>
</tr>
<tr>
<td>8</td>
<td>BELELLE</td>
<td>VILADONELLE</td>
<td>290571126 4815639</td>
<td>15.8</td>
<td>6.5</td>
<td>74.0</td>
<td>8.8</td>
<td>11.5</td>
<td>AAF</td>
</tr>
<tr>
<td>9</td>
<td>EUME</td>
<td>RIBADEUME</td>
<td>290591148 4820458</td>
<td>16.1</td>
<td>6.5</td>
<td>46.2</td>
<td>9.7</td>
<td>8.7</td>
<td>AAF</td>
</tr>
<tr>
<td>10</td>
<td>EUME</td>
<td>OMBRE</td>
<td>290571870 4808503</td>
<td>13.0</td>
<td>6.4</td>
<td>126.2</td>
<td>10.7</td>
<td>41.8</td>
<td>AAF</td>
</tr>
<tr>
<td>11</td>
<td>MANDEO</td>
<td>MUNIFERRAL</td>
<td>290576677 4789640</td>
<td>16.6</td>
<td>7.0</td>
<td>83.0</td>
<td>9.9</td>
<td>14.9</td>
<td>AAF</td>
</tr>
<tr>
<td>12</td>
<td>MERO</td>
<td>MABEGONDO</td>
<td>290560483 4789644</td>
<td>16.0</td>
<td>7.0</td>
<td>112.7</td>
<td>9.6</td>
<td>25.2</td>
<td>AAF</td>
</tr>
<tr>
<td>13</td>
<td>MERO</td>
<td>CAMBRE</td>
<td>290554293 4793045</td>
<td>20.1</td>
<td>7.1</td>
<td>195.0</td>
<td>9.5</td>
<td>58.7</td>
<td>AAF</td>
</tr>
<tr>
<td>14</td>
<td>BARCÉS</td>
<td>RIBEIRA</td>
<td>290551899 4784011</td>
<td>16.5</td>
<td>7.1</td>
<td>456.7</td>
<td>9.8</td>
<td>167.0</td>
<td>AAF</td>
</tr>
<tr>
<td>15</td>
<td>ANGLON</td>
<td>ANGLONS</td>
<td>290593983 4786303</td>
<td>16.9</td>
<td>7.3</td>
<td>173.1</td>
<td>10.0</td>
<td>40.8</td>
<td>AAF</td>
</tr>
<tr>
<td>16</td>
<td>GRANDE</td>
<td>PONTE DO PORTO</td>
<td>290491863 4776196</td>
<td>17.2</td>
<td>6.7</td>
<td>93.4</td>
<td>9.7</td>
<td>15.8</td>
<td>AAF</td>
</tr>
<tr>
<td>17</td>
<td>CASTRO</td>
<td>SENANDE</td>
<td>290490192 4765965</td>
<td>16.6</td>
<td>6.3</td>
<td>85.7</td>
<td>9.6</td>
<td>10.8</td>
<td>AAF</td>
</tr>
<tr>
<td>18</td>
<td>XALLAS</td>
<td>PTE OLIVEIRA</td>
<td>290498653 4756899</td>
<td>18.7</td>
<td>6.7</td>
<td>74.5</td>
<td>9.0</td>
<td>16.9</td>
<td>ARB</td>
</tr>
<tr>
<td>19</td>
<td>DUBRA</td>
<td>PORTOMOURO</td>
<td>290529113 4756557</td>
<td>14.9</td>
<td>7.2</td>
<td>90.1</td>
<td>10.4</td>
<td>26.8</td>
<td>ARB</td>
</tr>
<tr>
<td>20</td>
<td>TAMBRÉ</td>
<td>CHAÍN</td>
<td>290558222 4754950</td>
<td>17.0</td>
<td>7.0</td>
<td>98.3</td>
<td>9.9</td>
<td>27.3</td>
<td>ARB</td>
</tr>
<tr>
<td>21</td>
<td>TAMBRÉ</td>
<td>PORTOMOURO</td>
<td>290528303 4758349</td>
<td>17.6</td>
<td>7.2</td>
<td>98.6</td>
<td>10.2</td>
<td>23.9</td>
<td>ARB</td>
</tr>
<tr>
<td>22</td>
<td>TRABA</td>
<td>NOIA-PORTOBRAGO</td>
<td>290519091 4737178</td>
<td>16.4</td>
<td>6.2</td>
<td>72.3</td>
<td>9.9</td>
<td>10.7</td>
<td>ARB</td>
</tr>
<tr>
<td>23</td>
<td>ULLA- FURELOS</td>
<td>PONTE BARAZÓN</td>
<td>290580147 4745726</td>
<td>15.7</td>
<td>7.3</td>
<td>122.1</td>
<td>9.0</td>
<td>38.4</td>
<td>ARB</td>
</tr>
<tr>
<td>24</td>
<td>ULLA- DEZA</td>
<td>CIRA</td>
<td>290554401 4736284</td>
<td>16.9</td>
<td>7.2</td>
<td>106.5</td>
<td>10.1</td>
<td>26.5</td>
<td>ARB</td>
</tr>
<tr>
<td>25</td>
<td>ULLA- SAR</td>
<td>BERTAMIRÀNS</td>
<td>290550247 4745287</td>
<td>17.6</td>
<td>7.4</td>
<td>310.8</td>
<td>8.3</td>
<td>55.3</td>
<td>ARB</td>
</tr>
<tr>
<td>26</td>
<td>ULLA</td>
<td>SANTISO (MOURAZOS)</td>
<td>290579849 4744500</td>
<td>15.6</td>
<td>7.2</td>
<td>77.9</td>
<td>9.8</td>
<td>20.1</td>
<td>ARB</td>
</tr>
<tr>
<td>27</td>
<td>ULLA</td>
<td>PTE LEDESMA</td>
<td>290554492 4738488</td>
<td>16.5</td>
<td>7.3</td>
<td>93.7</td>
<td>9.7</td>
<td>27.9</td>
<td>ARB</td>
</tr>
<tr>
<td>28</td>
<td>ULLA</td>
<td>CARCÁCIA</td>
<td>290532844 4732618</td>
<td>18.3</td>
<td>7.3</td>
<td>93.9</td>
<td>9.9</td>
<td>25.1</td>
<td>ARB</td>
</tr>
<tr>
<td>29</td>
<td>ULLA</td>
<td>COTO DE CALDAS</td>
<td>290527579 4716262</td>
<td>18.3</td>
<td>6.8</td>
<td>55.8</td>
<td>8.9</td>
<td>9.5</td>
<td>ARB</td>
</tr>
<tr>
<td>30</td>
<td>LEREZ</td>
<td>CUTIÁN</td>
<td>290538023 4708198</td>
<td>17.4</td>
<td>6.7</td>
<td>40.1</td>
<td>9.1</td>
<td>7.4</td>
<td>ARB</td>
</tr>
<tr>
<td>31</td>
<td>LEREZ</td>
<td>BORA</td>
<td>290534017 4699819</td>
<td>19.1</td>
<td>6.7</td>
<td>37.9</td>
<td>10.7</td>
<td>—</td>
<td>ARB</td>
</tr>
<tr>
<td>32</td>
<td>VERDUGO</td>
<td>SOUTOMAIOR</td>
<td>290536405 4688537</td>
<td>18.5</td>
<td>6.8</td>
<td>39.2</td>
<td>9.5</td>
<td>4.9</td>
<td>ARB</td>
</tr>
<tr>
<td>33</td>
<td>OITAVEN</td>
<td>SOUTOMAIOR</td>
<td>290536676 4687826</td>
<td>17.1</td>
<td>6.5</td>
<td>35.0</td>
<td>9.6</td>
<td>5.0</td>
<td>ARB</td>
</tr>
<tr>
<td>34</td>
<td>ZAMÁNS</td>
<td>ZAMÁNS</td>
<td>290523794 4667710</td>
<td>19.7</td>
<td>6.9</td>
<td>61.7</td>
<td>9.1</td>
<td>11.3</td>
<td>ARB</td>
</tr>
<tr>
<td>35</td>
<td>SAN LÁZARO</td>
<td>290644962 4886175</td>
<td>6.3</td>
<td>7.5</td>
<td>60.0</td>
<td>—</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>TORNOS-PALLEIRAS</td>
<td>29063432 4683447</td>
<td>12.7</td>
<td>6.6</td>
<td>12.7</td>
<td>88.5</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>CANEIRO-REQUEIXO</td>
<td>290647398 4687699</td>
<td>18.6</td>
<td>6.8</td>
<td>89.3</td>
<td>9.7</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CENZA</td>
<td>290647250 4671662</td>
<td>24.5</td>
<td>7.1</td>
<td>20.2</td>
<td>79.1</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>PRADOALBAR-CONSO</td>
<td>290641788 4670533</td>
<td>16.7</td>
<td>6.9</td>
<td>15.0</td>
<td>9.8</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>INVERNADERO SUR</td>
<td>290636900 4664375</td>
<td>17.5</td>
<td>7.0</td>
<td>128.3</td>
<td>9.1</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>INVERNADERO NORTE</td>
<td>290640350 4665600</td>
<td>18.4</td>
<td>6.7</td>
<td>43.3</td>
<td>9.3</td>
<td>—</td>
<td>MCG</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Localities and physicochemical values. [C, rivers of the Bay of Biscay; AAF, rivers of the Arco Ártabro-Fisterra; ARB, rivers of the Rias Baixas; MCG, rivers of the Macizo Central Gallego.]
Table 2. Optima calculated for the most common and abundant diatoms. Values were calculated using Weighted Averages as implemented in C2 (Juggins 2014).

<table>
<thead>
<tr>
<th>pH</th>
<th>Conductivity</th>
<th>Nitrites</th>
<th>Phosphates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µS cm⁻¹</td>
<td>mg L⁻¹</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Achnanthes oblongella Oostap</td>
<td>6.7</td>
<td>72.3</td>
<td>1.519</td>
</tr>
<tr>
<td>Achnanthes chilensis (Hohn & Helleman) Novelo, Tavera & Ibára</td>
<td>6.1</td>
<td>43.5</td>
<td>1.338</td>
</tr>
<tr>
<td>Achnanthes lanceolatum Bréb. ex Kütz.</td>
<td>6.9</td>
<td>78.1</td>
<td>2.887</td>
</tr>
<tr>
<td>Achnanthes minutissima var. Kütz.</td>
<td>6.7</td>
<td>55.1</td>
<td>1.252</td>
</tr>
<tr>
<td>Achnanthes subhastulosoides (Hust.) Monnier, Lange-Bert. & Ector</td>
<td>6.6</td>
<td>43.3</td>
<td>0.837</td>
</tr>
<tr>
<td>Adlafia bryophila (J.B.Petersen) Moser, Lange-Bert. & Metzeltin</td>
<td>6.8</td>
<td>45.7</td>
<td>0.826</td>
</tr>
<tr>
<td>Achnanthes subhastulosoides (Hust.) H.Kobayasi</td>
<td>7.0</td>
<td>78.9</td>
<td>1.373</td>
</tr>
<tr>
<td>Cocconeis placenta var. punguta (Ehrenb.) Grunow</td>
<td>7.0</td>
<td>79.1</td>
<td>1.442</td>
</tr>
<tr>
<td>Cymbella aspera (Ehrenb.) Cleve</td>
<td>6.7</td>
<td>81.3</td>
<td>0.503</td>
</tr>
<tr>
<td>Diatoma megodon (Ehrenb.) Kütz.</td>
<td>6.7</td>
<td>35.1</td>
<td>1.885</td>
</tr>
<tr>
<td>Encyonema minutum (Hille) D.G.Mann</td>
<td>7.1</td>
<td>67.1</td>
<td>2.522</td>
</tr>
<tr>
<td>Encyonema silexicum (Bleisch) D.G.Mann</td>
<td>6.8</td>
<td>50.0</td>
<td>1.377</td>
</tr>
<tr>
<td>Eunotia bilamellata var. bilamellata (Ehrenb.) Mills</td>
<td>6.3</td>
<td>38.7</td>
<td>0.538</td>
</tr>
<tr>
<td>Eunotia exigua (Bréb. ex Kütz.) Rabenh.</td>
<td>6.3</td>
<td>38.5</td>
<td>0.941</td>
</tr>
<tr>
<td>Eunotia jaha Grunow</td>
<td>6.5</td>
<td>31.9</td>
<td>0.384</td>
</tr>
<tr>
<td>Eunotia implicata Nörpel, Lange-Bert. & Alles</td>
<td>6.3</td>
<td>51.1</td>
<td>0.824</td>
</tr>
<tr>
<td>Eunotia incisa W.Greg.</td>
<td>6.3</td>
<td>31.8</td>
<td>0.284</td>
</tr>
<tr>
<td>Eunotia intermedia (Krauss ex Hust.) Nörpel & Lange-Bert.</td>
<td>6.2</td>
<td>35.1</td>
<td>0.847</td>
</tr>
<tr>
<td>Eunotia minor (Kütz.) Grunow</td>
<td>6.3</td>
<td>38.2</td>
<td>1.065</td>
</tr>
<tr>
<td>Eunotia paludosa (W.Sm.) Reimer var. paludosa</td>
<td>6.1</td>
<td>34.0</td>
<td>0.842</td>
</tr>
<tr>
<td>Eunotia pectinata (Kütz.) Rabenh. var. undulata (Ralfs) Rabenh.</td>
<td>6.4</td>
<td>51.2</td>
<td>1.016</td>
</tr>
<tr>
<td>Eunotia praecrepidata Ehrenb.</td>
<td>6.6</td>
<td>36.0</td>
<td>1.497</td>
</tr>
<tr>
<td>Eunotia subsatellitoides Alles, Nörpel & Lange-Bert.</td>
<td>6.1</td>
<td>38.6</td>
<td>0.842</td>
</tr>
<tr>
<td>Fragilaria capucina Desm. var. capucina</td>
<td>6.6</td>
<td>42.7</td>
<td>0.528</td>
</tr>
<tr>
<td>Fragilaria capucina var. vascularia (Kütz.) Lange-Bert.</td>
<td>6.8</td>
<td>51.5</td>
<td>2.938</td>
</tr>
<tr>
<td>Fragilaria capucina subsp. rugosa (Kütz.) Lange-Bert.</td>
<td>6.6</td>
<td>55.9</td>
<td>1.176</td>
</tr>
<tr>
<td>Fragilaria pinchat Ehrenb. var. pinchata</td>
<td>7.0</td>
<td>70.5</td>
<td>1.554</td>
</tr>
<tr>
<td>Fragilaria viridis Ehrenb.</td>
<td>6.4</td>
<td>41.9</td>
<td>1.395</td>
</tr>
<tr>
<td>Frustulia saxonica Rabenh.</td>
<td>6.5</td>
<td>60.9</td>
<td>2.520</td>
</tr>
<tr>
<td>Frustulia vaginalis (Thwaites) De Toni</td>
<td>6.6</td>
<td>59.3</td>
<td>3.374</td>
</tr>
<tr>
<td>Gomphonema exilissimum (Grunow) Lange-Bert. & E.Reichardt</td>
<td>6.5</td>
<td>45.5</td>
<td>0.960</td>
</tr>
<tr>
<td>Gomphonema gracile Ehrenb.</td>
<td>6.5</td>
<td>44.1</td>
<td>0.691</td>
</tr>
<tr>
<td>Gomphonema minutum (C.Agardh) C.Agardh f. minutum</td>
<td>6.9</td>
<td>75.5</td>
<td>2.118</td>
</tr>
<tr>
<td>Gomphonema parvulatum (Kütz.) Kütz. var. parvulatum f. parvulum</td>
<td>6.7</td>
<td>68.8</td>
<td>1.693</td>
</tr>
<tr>
<td>Gomphonema rhombicum Fröcke</td>
<td>6.9</td>
<td>52.9</td>
<td>1.724</td>
</tr>
<tr>
<td>Humboldtia contenta (Grunow) Lowe, Kociolek, J.R.Johans., Van de Vijver, Lange-Bert. & Kopalevá</td>
<td>6.8</td>
<td>49.0</td>
<td>1.214</td>
</tr>
<tr>
<td>Iconella delicatissima (F.W.Lewis) Ruck & Nakov</td>
<td>6.4</td>
<td>40.0</td>
<td>0.761</td>
</tr>
<tr>
<td>Navicula angusta Grunow</td>
<td>6.4</td>
<td>39.9</td>
<td>0.637</td>
</tr>
<tr>
<td>Navicula clevei Grunow</td>
<td>6.7</td>
<td>60.8</td>
<td>1.450</td>
</tr>
<tr>
<td>Navicula cryptopleura Lange-Bert.</td>
<td>7.0</td>
<td>75.2</td>
<td>1.277</td>
</tr>
<tr>
<td>Navicula exigilis Kütz.</td>
<td>6.7</td>
<td>67.3</td>
<td>2.113</td>
</tr>
<tr>
<td>Navicula gregaria Donkin</td>
<td>7.0</td>
<td>71.1</td>
<td>3.883</td>
</tr>
<tr>
<td>Navicula lanceolata (C.Agardh) Ehrenb.</td>
<td>6.9</td>
<td>82.8</td>
<td>3.146</td>
</tr>
<tr>
<td>Navicula minima Grunow</td>
<td>6.9</td>
<td>115.0</td>
<td>3.436</td>
</tr>
<tr>
<td>Navicula rynchocoele Kütz.</td>
<td>6.8</td>
<td>66.3</td>
<td>1.433</td>
</tr>
<tr>
<td>Nitzschia diissipata (Kütz.) Grunow var. diissipata</td>
<td>6.8</td>
<td>54.5</td>
<td>2.111</td>
</tr>
<tr>
<td>Nitzschia palea (Kütz.) W.Sm.</td>
<td>6.9</td>
<td>86.2</td>
<td>2.404</td>
</tr>
<tr>
<td>Nitzschia palea var. dehlica (Kütz.) Grunow</td>
<td>6.5</td>
<td>51.6</td>
<td>1.273</td>
</tr>
<tr>
<td>Pinnularia diversgens W.Sm. var. diversgens</td>
<td>6.8</td>
<td>92.1</td>
<td>0.283</td>
</tr>
<tr>
<td>Pinnularia subcapitata W.Greg. var. subcapitata</td>
<td>6.3</td>
<td>38.8</td>
<td>1.391</td>
</tr>
<tr>
<td>Planularia dani (Foged) Lange-Bert.</td>
<td>6.7</td>
<td>59.0</td>
<td>0.754</td>
</tr>
<tr>
<td>Reimeria sinuata (W.Greg.) Koziolk & Stoermer</td>
<td>6.9</td>
<td>62.0</td>
<td>1.633</td>
</tr>
<tr>
<td>Stauroneis roba Lejstenq</td>
<td>6.1</td>
<td>38.7</td>
<td>1.154</td>
</tr>
<tr>
<td>Tabellaria flocculosa (Roth) Kütz.</td>
<td>6.6</td>
<td>64.3</td>
<td>1.735</td>
</tr>
</tbody>
</table>
Diatom communities showed a high degree of similarity among sites and were comparable in all upstream stretches of these rivers draining siliceous substrates. Dominant epilithic diatom taxa were *Achnanthidium minutissimum*, *Achnanthes subhudsonis*, *Karayevia oblongella*, *Cocconeis placenta* var. *euglypta*, *Gomphonema rhombicum*, and *Navicula minima*. *Achnanthes subhudsonis* was the most abundant species during the spring and summer months. The remaining species showed no relevant changes regardless of the time of year. Other species which also occurred frequently but were less abundant were: *Amphora pediculus*, *Cocconeis placenta* var. *pseudolineata*, *Encyonema minutum*, *Fragilariopsis capucina* subsp. *ruppens*, *Gomphonema parvulum*, *Melosira varians*, *Navicula angustia*, *Navicula cryptotenella*, *Navicula lanceolata*, *Psammothidium cryptotenella*, *Navicula angusta*, *Navicula cryptocephala*, *Navicula rumpens*, *Gomphonema parvulum*, *Melosira varians*, *Encyonema minutum*, *Fragilaria capucina* var. *rumpens*, *Fragilaria crotonensis* *Fragilaria capucina* var. *constrictum*, *Cocconeis placentula*.

Overall, 141 taxa have been found which can be classified in 48 genera and six families. The taxa that are new for Iberian Peninsula are marked with three asterisk (***) for Spain with two asterisk (**), the records which are new to Galicia with an asterisk (*). Locality numbers for the new records and figures are indicated after each taxon within brackets.

Coscinodiscophyceae

- *Ancalosera alpigena* (Grunow) Krammer (fig. 2h)*
- *Ancalosera ambigua* (Grunow) Simonsen (fig. 2a)*
- *Ancalosera distans* (Ehrenb.) Simonsen (fig. 2c)
- *Cyclorella meneghiniana* Kütz. (fig. 2e)
- *Discostella stelligera* Cleve & Grunow Houk & Klee (fig. 2f)
- *Melosira varians* C.Agardh (fig. 2d)

Fragilariophyceae

- *Asterionella formosa* Hassall (fig. 2r)
- *Diatoma mesodon* (Ehrenb.) Kütz. (fig. 2s)
- *Diatoma vulgaris* Bory (fig. 2t)
- *Fragilaria bidens* Heib. (fig. 2j)
- *Fragilaria capucina* var. *capitellata* (Grunow) Lange-Bert. (fig. 2g)
- *Fragilaria capucina* var. *capucina* Desm. (fig. 2i)
- *Fragilaria capucina* var. *ruppens* (Kutz.) Lange-Bert. (fig. 2h)
- *Fragilaria capucina* var. *vaucheriacea* (Kütz.) Lange-Bert. (fig. 2m)
- *Fragilaria crotonensis* Kitton (fig. 2q)
- *Fragilaria parasitica* (W.Sm.) Grunow (fig. 2k)*
- *Fragilarisformia virescens* (Ralfs) D.M. Williams & Round (fig. 2l)
- *Hannahia arcus* (Ehrenb.) R.M. Patrick (fig. 2n)
- *Meridion circulare* var. *constrictum* (Ralfs) Van Heurck (fig. 2v)

Bacillariophyceae

- *Achnantes brevispes* var. *intermedia* (Kütz.) Cleve (fig. 4o)*
- *Achnanthidium minutissimum* (Kütz.) Czarnecki (fig. 4m)
- *Achnanthidium subatomus* (Hust.) Lange-Bert. (fig. 4n)
- *Amphora inaequiensis* Krammer (fig. 9n)*
- *Amphora ovalis* (Kütz.) Kütz. (fig. 9m)
- *Amphora pediculus* (Kütz.) Grunow (fig. 9o)
- *Bacillaria paradoxa* J.F.Gmel. (fig. 10a)*
- *Brachysira intermedia* (Ostrup) Lange-Bert. (fig. 5a)
- *Brachysira neglectissima* Lange-Bert. (fig. 5c)
- *Brachysira neoexilis* Lange-Bert. (fig. 5b)
- *Caloneis bacillum* (Grunow) Cleve (fig. 6b)
- *Caloneis molaris* (Grunow) Krammer (fig. 6c)
- *Caloneis silicula* (Ehrenb.) Cleve (fig. 6d)
- *Cavina variostratiata* (Krasske) D.G.Mann & Stickle (fig. 5d)*
- *Cocconeis pediculus* Ehrenb. (fig. 4r)
- *Cocconeis placenta* var. *euglypta* (Ehrenb.) Grunow (fig. 4p)
- *Cocconeis placenta* var. *lineata* (Ehrenb.) Van Heurck (fig. 4q)
- *Cocconeis placenta* var. *pseudolineata* Geitler (fig. 4s)
- *Craticula baderi* (Hust.) D.G.Mann (fig. 8 h)*
- *Cymbella aspera* (Ehrenb.) Cleve (fig. 8 k)
- *Cymbella tumida* (Bréb.) Van Heurck (fig. 8 j)
- *Diploneis elliptica* (Kütz.) Cleve (fig. 5n)
- *Diploneis oculata* (Bréb.) Cleve (fig. 5o)
- *Diploneis ovalis* (Hilse) Cleve (fig. 5m)
- *Encyonema gracile* Rabenh. (fig. 8 m)
- *Encyonema minutum* (Hilse) D.G.Mann (fig. 8 i)
- *Encyonema silesiacum* (Bleisch) D.G.Mann (fig. 8 l)
- *Eunotia bilunaris* (Ehrenb.) Mills (fig. 3a)
- *Eunotia exigua* (Breb. ex Kütz.) Rabenh. (fig. 3e)
- *Eunotia faba* Ehrenb. (fig. 3c)
- *Eunotia formica* Ehrenb. (fig. 3b)
- *Eunotia implicata* Nörpel, Lange-Bert. & Alles (fig. 3f)
- *Eunotia incisa* W.Greg. (fig. 3g)
- *Eunotia intermedia* (Krasske ex Hust.) Nörpel & Lange-Bert. (fig. 3j)
- *Eunotia minor* (Kütz.) Grunow (fig. 3i)
- *Eunotia pecinatilis* var. *undulata* (Ralfs) Rabenh. (fig. 3k)
- *Eunotia praerupta* Ehrenb. (fig. 3l)
- *Eunotia soleirolii* (Kütz.) Rabenh. (fig. 3m)*
Fig. 2. Epilithic diatoms (Coscinodiscophyceae-Fragilariophyceae): a, Aulacoseira ambigua; b, Aulacoseira alpigena; c, Aulacoseira distans; d, Melosira varians; e, Cyclotella meneghiniana; f, Discostella stelligera; g, Fragilaria capucina var. capitellata; h, Fragilaria capucina var. rumpens; i, Fragilaria capucina var. capucina; j, Fragilaria bidens; k, Fragilaria parasitica; l, Fragilariaformavirescens; m, Fragilaria capucina var. vaucheri; n, Hannaea arcus; o, Ulnaria biceps; p, Ulnaria ulna; q, Fragilaria crotonensis; r, Asterionella formosa; s, Diatoma mesodon; t, Diatoma vulgaris; u, Tabellaria floculosa; v, Meridion circulare var. constrictum. [Scale bars 6 µm.]
Fig. 3. Epilithic diatoms (Bacillariophyceae): a, Eunotia bilunaris; b, Eunotia formica; c, Eunotia faba; d, Eunotia sp.; e, Eunotia exigua; f, Eunotia implicata; g, Eunotia incisa; h, Eunotia islandica; i, Eunotia minor; j, Eunotia intermedia; k, Eunotia pectinalis var. undulata; l, Eunotia praerupta; m, Eunotia soleirolii; n, Eunotia subarcuatooides; o, Peronia erinacea. [Scale bars 6 µm.]
Fig. 4. Epilithic diatoms (Bacillariophyceae): a, Karayevia oblongella; b, Kolbesia suchlanditii; c, Lemnicola hungarica; d, Nupela lapidosa; e, Planothidium daui; f, Planothidium lanceolatum; g, Planothidium peragalli; h, Psammothidium helveticum; i, Psammothidium subatomoides; j, Achnanthes scotica; k, Achnanthes chlidanos; l, Achnanthes subhudsonis; m, Achnanthidium minutissimum; n, Achnanthidium subatomos; o, Achnanthes brevipes var. intermedia; p, Cocconeis placentula var. euglypta; q, Cocconeis placentula var. lineata; r, Cocconeis pediculus; s, Cocconeis placentula var. pseudolineata; t, Cocconeis scutellum. [Scale bars 6 µm.]

Fig. 5. Epilithic diatoms (Bacillariophyceae): a, Brachysira intermedia; b, Brachysira neoexilis; c, Brachysira neglectissima; d, Cavinula variostriata; e, Humidophila contenta; f, Humidophila laevissima; g, Humidophila perpusilla; h, Frustulia amphipleuroides; i, Frustulia saxonica; j, Frustulia vulgaris; k, Neidium affine; l, Luticola goeppertiana; m, Diploneis ovalis; n, Diploneis elliptica; o, Diploneis oculata. [Scale bars 6 µm.]
Fig. 6. Epilithic diatoms (Bacillariophyceae): a, Sellaphora pupula; b, Caloneis bacillum; c, Caloneis molaris; d, Caloneis silicula; e, Pinnularia graciloides var. triundulata; d, Pinnularia subgibba var. undulata; e, Pinnularia divergens; f, Pinnularia parvulissima; g, Pinnularia permicrostauron; h, Pinnularia subcapitata; i, Pinnularia sinistra; j, Pinnularia nodosa var. angusta; k, Pinnularia lundii; l, Pinnularia frauenbergiana; m, Pinnularia borealis var. sublinearis; n, Pinnularia divergens; o, Pinnularia acrosphaeria; p, Pinnularia stidolphii. [Scale bars 6 µm.]
Fig. 7. Epilithic diatoms (Bacillariophyceae): a, Navicula concentrica; b, Navicula lanceolata; c, Navicula clementis; d, Navicula viridula; e, Navicula angusta; f, Navicula cryptocephala; g, Navicula cryptotenella; h, Navicula cryptotenelloides; i, Navicula minima; j, Navicula rhyncocephala; k, Navicula gregaria; l, Navicula tripunctata; m, Navicula rostellata; n, Navicula viridula. [Scale bars 6 µm.]
Fig. 8. Epilithic diatoms (Bacillariophyceae): a, Gyrosigma acuminatum; b, Stauroneis prominula; c, Stauroneis anceps; d, Stauroneis kriegerii; e, Stauroneis obtusa; f, Rhoicosphenia abbreviata; g, Hippodonta capitata; h, Craticula buderi; i, Encyonema minutum; j, Cymbella tumida; k, Cymbella aspera; l, Encyonema silesiacum; m, Encyonema gracile. [Scale bars 6 µm.]
Fig. 9. Epilithic diatoms (Bacillariophyceae): a, Gomphonema acuminatum; b, Gomphonema ibericum; c, Gomphonema clavatum; d, Gomphonema gracile; e, Gomphonema minutum; f, Gomphonema parvulum var. exilissimum; g, Gomphonema parvulum var. parvulum; h, Gomphonema pseudoagur; i, Gomphonema pumilum; j, Gomphonema rhombicum; k, Gomphonema angustum; l, Gomphonema cf. pumilum; m, Amphora ovalis; n, Amphora inaeiriensis; o, Amphora pediculus; p, Reimeria sinuata. [Scale bars 6 µm.]
Fig. 10. Epilithic diatoms (Bacillariophyceae): a, Bacillaria paradoxa; b, Nitzschia sp.; c, Nitzschia amphibia; d, Nitzschia epithemoides; e, Nitzschia archibaldi; f, Nitzschia palea var. debilis; g, Nitzschia inconspicua; h, Nitzschia fonticola; i, Nitzschia dissipata; j, Nitzschia perminuta; k, Nitzschia palea; l, Nitzschia recta. [Scale bars 6 µm.]
<table>
<thead>
<tr>
<th>Species</th>
<th>Author/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eunotia subarcuatoides</td>
<td>Alles, Norpel & Lange-Bert. (fig. 3n)</td>
</tr>
<tr>
<td>Frustulia amphipleuroides</td>
<td>Grunow Cleve (fig. 5h)</td>
</tr>
<tr>
<td>Frustulia saxoniae Rabenh.</td>
<td>(fig. 5i)</td>
</tr>
<tr>
<td>Frustulia vulgaris (Thwaites) De Toni</td>
<td>(fig. 5j)</td>
</tr>
<tr>
<td>Gomphonema acuminatum Ehrenb.</td>
<td>(fig. 9a)</td>
</tr>
<tr>
<td>Gomphonema angustum C.Agardh</td>
<td>(fig. 9k)</td>
</tr>
<tr>
<td>Gomphonema gracile Ehrenb.</td>
<td>(fig. 9d)</td>
</tr>
<tr>
<td>Gomphonema ibericum E.Reichardt</td>
<td>(fig. 9b)</td>
</tr>
<tr>
<td>Gomphonema minutum (C.Agardh) C.Agardh</td>
<td>(fig. 9e)</td>
</tr>
<tr>
<td>Gomphonema parvulum var. parvulum (Kütz.) Kütz.</td>
<td>(fig. 9g)</td>
</tr>
<tr>
<td>Gomphonema parvulum var. exilissimum Grunow</td>
<td>(fig. 9f)</td>
</tr>
<tr>
<td>Gomphonema pseudoaugur Lange-Bert.</td>
<td>(fig. 9h) **</td>
</tr>
<tr>
<td>Gomphonema parvulum var.</td>
<td>(fig. 9i) **</td>
</tr>
<tr>
<td>Gomphonema minutum (C.Agardh) C.Agardh</td>
<td>(fig. 9j)</td>
</tr>
<tr>
<td>Gomphonema pustulosa</td>
<td>(fig. 11e)</td>
</tr>
<tr>
<td>Gomphonema angusta Grunow</td>
<td>(fig. 7c) **</td>
</tr>
<tr>
<td>Gomphonema clementis Grunow</td>
<td>(fig. 7i) **</td>
</tr>
<tr>
<td>Gomphonema concentrica Carter</td>
<td>(fig. 7a) **</td>
</tr>
<tr>
<td>Gomphonema cryptocephala Kütz.</td>
<td>(fig. 7f) **</td>
</tr>
<tr>
<td>Gomphonema cryptotenella Lange-Bert.</td>
<td>(fig. 7g) **</td>
</tr>
<tr>
<td>Gomphonema cryptotenelloides Lange-Bert.</td>
<td>(fig. 7h) **</td>
</tr>
<tr>
<td>Gomphonema gregoria Donkin</td>
<td>(fig. 7k) **</td>
</tr>
<tr>
<td>Gomphonema lanceolata (C.Agardh) Ehrenb.</td>
<td>(fig. 7b) **</td>
</tr>
<tr>
<td>Gomphonema minimax Grunow</td>
<td>(fig. 7i) **</td>
</tr>
<tr>
<td>Gomphonema rhyncocephala Kütz.</td>
<td>(fig. 7j) **</td>
</tr>
<tr>
<td>Gomphonema rostellata Kütz.</td>
<td>(fig. 7m) **</td>
</tr>
<tr>
<td>Gomphonema tripunctata (O.F.Müll.) Bory</td>
<td>(fig. 7l) **</td>
</tr>
<tr>
<td>Gomphonedicta langebertalotii</td>
<td>(fig. 12)**</td>
</tr>
</tbody>
</table>

Fig. 11. Epilithic diatoms (Bacillariophyceae): a, Nitzschia sigmoide; b, Nitzschia nana; c, Hantzschia amphioxys; d, Rhopalodia gibba; e, Grunowia solgensis; f, Iconella delicatissima; g, Surirella angusta; h, Surirella roba; i, Surirella robusta; j, Iconella linearis; k, Surirella helvetica; l, Surirella biseriata; m, Surirella patella; n, Surirella brebissonii. [Scale bars 6 µm.]
Description of selected taxa

1. **Achnanthes brevipes** var. **intermedia** (Kütz.) Cleve, Kongl. Svenska Vetensk.-Akad. Handl. ser. 4, 27(3): 193 (1895). Fig. 4o.

Valves 14–130 × 9.5–40 μm, linear-lanceolate or linear-elliptical to elliptical, with wedge-shaped or obtuse to broadly rounded endings, often a bit concave in the middle. Raphid valves with a moderately strong to weak curved raphe and equilateral-turning terminal branches. Axial area narrow, linear, while central area is fairly narrow, reaching to the edges forming a transverse fascia. Rapheless valves with narrow axial area, often running curved, mostly. Ends not wedge-shaped, but rather broadly rounded. Stria mostly 9–10 in 10 μm and less coarse than *Achnanthes brevipes* C.Agardh.

Habitat and distribution.—This species has a cosmopolitan distribution along lowland areas even in estuaries. Hustedt (1930) thought that it could be regarded as caused by reduced salinity variation.

Note.—A similar taxon is *Achnanthes taylorensis* D.E.Kellogg, Stuiver, T.B.Kellogg & G.H.Denton which has been often confused with *Achnanthes brevipes* var. *intermedia*. However, both differ in striae density (13–15 vs. 10 in 10 μm; Cleve 1895).

2. **Brachysira intermedia** (Østrup) Lange-Bert., *Biblioth. Diatomol.* 29: 34 (1994); *Anomoeoneis intermedia* Østrup, *Danske Diat.* 70, pl. II fig. 48 (1910). Fig. 5a.

Valves 25–33 × 5–6.5 μm, outline very variable, strictly lanceolate, although gradually narrowing early to almost pointed ends. Striae 26–30 in 10 μm, mostly from two to three composed lineolae, radial, and only at the ends sometimes parallel to slightly convergent. The Voigt unconformity is clearly visible on one side by truncated stria. Central area is small and indistinct rhombic, and clearly separated from the narrow linear axial area. Raphe filiform with small, clearly marked central pores.

Habitat and distribution.—Characteristic habitats are oligotrophic to dystrophic waters with very low electrolyte content on silicate soils, particularly in mountainous areas.

Note.—A similar taxon is *Brachysira brebissonii* R.Ross, but differs because of the duller, broader and not early narrowing ends. The

Fig. 12. *Naviculadiicta langeberthalotii*: a, light microscope images (scale bar 10 μm); b, SEM images (adapted from Cantonati & al. 2012).
distribution of this taxon in Europe is not known precisely because of the confusion with Brachysira brebissonii.

Frustulia gastroides Kütz., Linnaea 8(5): 543, pl.13 fig.9 (1833); *Cymbella gastroides* (Kütz.) Bréb. & Godey, Mém. Soc. Acad. Sci. Falaise: 49 (1835); *Cymbella gastroides* (Kütz.) Kütz., Kieselsch. Bacill.: 79, pl. 6 fig. 4B (1844), comb. superfl.

Valves 110–200 × 26–35 μm, moderately to distinctly dorsiventral, marginal ventral margin arched. Ventral margin slightly protuberant at the central part. Valve ends not protracted and broadly rounded. Axial area moderately wide, linear, widening at mid-valve to form a widened central area. Raphe filiform near the proximal ends with moderately large roundish central pores which are moderately distant and slightly ventrally deflected. Distal ends slightly reverse-lateral, terminal fissures sickle-shaped. Striae slightly radiate. Puncta distinctly visible and more or less roundish. Striae 6.5‒8 in 10 μm.

Habitat and distribution.—Although widely distributed in Europe, it is not often recorded in large numbers. It prefers oligotrophic waters, especially favored are habitats in the mountains of average electrolyte content.

Note.—It is distinguished from other similar taxa by outline, size, pearl-like puncta, and especially by the structure of the proximal raphe ends. *Cymbella aspera* has large roundish central pores, whereas *Cymbella lanceolata* (C.Agardh) C.Agardh has crosier-shaped central fissures. The puncta of *Cymbella neogena* (Grunow) Krammer are less shining “aspera”, and this taxon has more than 12 puncta/10 μm, and *Cymbella peraspera* Krammer are larger —broader than 38 μm—. *Cymbella subaspera* Krammer is smaller, the outline is stockier and smaller forms have straight to slightly concave ventral margins.

Valves are asymmetric to the apical axis and variably asymmetric to the transapical axis. Dorsal margins are moderately arched. Ventral margins are weakly concave. The apices are broadly rounded, with a deep notch on the ventral side. Terminal raphe fissures are very short at the junction of the valve face and mantle. Striae are radiate and very finely punctate. Areolae are difficult to resolve in LM.

Habitat and distribution.—In Europe *Eunotia faba* was found in Ireland, Wales and Romania from soft, somewhat dystrophic ponds, lakes and swamps. Camburn & Charles (2000) reported this taxon—as *Eunotia vanheurckii* R.M.Patrick— from low-alkalinity lakes in the Adirondack Mountains of New York. *Eunotia faba* has been recorded from in anthropogenically undisturbed oligotrophic, weakly acidic to alkaline habitats in mountainous areas (Lange-Bertalot et al. 2011).

Note.—A similar taxon is *Eunotia incisa* that has acutely rounded apices and narrower valves —less than 5 μm wide—. *Eunotia rhomboides* Hustedt is also heteropolar, or asymmetric to the transverse axis, but *Eunotia faba* has distinctly wider valves.

Eunotia impressa var. *angusta* in Van Heurck, Syn. Diatom. Belgique, Atlas, pl. 33 fig. 22, pl. 35 fig.1 (1881).

Valves 20–40 × 3–6 μm. Ventral margin is weakly concave, while dorsal margin is distinctly convex. Frequently, this dorsal margin presents two shallow undulations. Valve somewhat narrower at the ends than at the centre. The ends of the valve are rounded, narrowing slightly but they do not set off from the main body of the valve. The terminal nodes are located near but not at the end of the valve. Striae in the middle around 14–16 in 10 μm, about 22 in the ends; striae straight and almost perpendiculard to the ventral side in the center of the valve.

Habitat and distribution.—This taxon is fairly common in silicate-dominated streams of the highlands and the North German lowlands, occurring even at high numbers, but rarely observed in stagnant water (Hoffman & al. 2013). The habitats are largely anthropogenically undisturbed, low in electrolytes and oligotrophic to dystrophic. Ortiz-Lerin & Jaume Cambra (2007) reported this taxon from low to upland streams in Northern Spain —76–1,356 m a.s.l.— with pH = 4.3–7.9 and conductivity ranging from 4.17 to 720 μS·cm⁻¹. *Eunotia implicata* is an acidophilus taxon, mainly occurring at pH below 7 (Van Damm & al. 1994). In this work *Eunotia implicata* has a pH optimum of 6.3 and was found in oligotrophic lowland streams.

Note.—*Eunotia implicata* can be mistaken with exceptionally thin specimens of *Eunotia minor* (Kütz.) Grunow, but are distinguished by a higher striae density —9–16/10 μm— in the middle section.

6. *Eunotia incisa* W.Greg., Quart. J. Microscop. Sci. 12: 96, pl. 4 fig. 4 (1854). Fig. 3.

Valves 15–50 × 4–7 μm. Striae 13–17 in 10 μm, more distant at the centre of the valve than at the ends. Ventral margin straight in smaller specimens but weakly concave in larger specimens. Dorsal margin is convex. Apices are acutely rounded, with a “nose-like” appearance. Raphe distal ends lie on the valve mantle and the terminal raphe nodules are well set in from the apices. Frustules are rectangular to quadratic in girdle view.

Habitat and distribution.—It is one of the most common *Eunotia* species in Europe, probably a cosmopolitan species. Common in various electrolyte-poor, oligotrophic to dystrophic waters. Abundant in streams of the low mountain ranges of the study area but rare in the lowlands. Common in acidic, freshwater environments with low levels of organic matter and nutrients, and weakly mineralized. Occasionally it can occur in high abundances. In the north of Spain this species was found in habitats with pH 4.7–6.8, conductivity 4.17–194 μS·cm⁻¹, although reached its maximum abundance at pH 5.3–6, conductivity 38–51 μS·cm⁻¹, and altitude 472–484 m a.s.l. (Ortiz-Lerin & Cambra 2007). In our study pH optimum was 6.3 and ranged between 5.5 and 6.8.
Note.—Several forms and variations in length, width, and stria
density are currently included in the broad concept of *Eunotia incisa*.
Lange-Bertalot & al. (2011) have further described new species from
Europe, such as *Eunotia incisadistans* Lange-Bert. & Sienkiewicz,
which has broader valves with lower stria density. *Eunotia incisadistans*
is also similar to *Eunotia borealoalpina* Lange-Bert. & Nörpel-Scheimpflug
and *Eunotia rhomboidea* Hust. only in girdle view, *Eunotia veneris* (Kütz.)
De Toni was often confused in the older literature and is not detected
in Central Europe. Valves of *Eunotia incisadistans* however, are symmetric
in regard to apex width and position of the helicostomatales compared to the
asymmetry in these features in *Eunotia rhomboidea*. In North America,
more differentiable taxa occur. *Eunotia incisa* is similar to *Eunotia
canicula* P.C.Furey, R.L.Lowe & J.R.Johans. and the size range of the
two species overlap. The apices of *Eunotia incisa*, however, are more
nose-like than the apices of *Eunotia canicula*. Furthermore, the valves of
Eunotia canicula are narrower and the helicostomatales are closer to the
apex — less inset — as compared to *Eunotia incisa*. Individuals such as
those in fig. 61 that have broader and rounded apices, such as valves with
morphology similar to Taf. 161 figs. 13–15 in Krammer & Lange-Bertalot
(1991) could be considered as a new species, although for the moment
they should be considered only as another variation of valve morphology.

Valves 14–45 × 3.5–5 μm, thickened midway between the
center and the ends. Striae 14–19 in 10 μm, getting
closer to the ends. The ventral side of the valve is almost
straight or weakly concave at most. The dorsal margin
is convex. The apices hardly differ from the body of the
valve. The terminal nodes are clearly differentiated, and
located near the ends.

Habitat and distribution.—Spread, so far known with certainty only
from the northern hemisphere, scattered in the area, mostly occurring
at pH < 7 (Van Damm & al. 1994). In the studied area the species has
a pH optimum of 6.2.

Note.—Similar outline to *Eunotia faba*. However the location of the
terminal nodes is different.

Valves 10–140 × 5–10 μm, dorsiventral and symmetric
to the transapical axis. Striae 7–15 in 10 μm, extending
across the entire surface of the valve. Ventral margin
straight or slightly concave, can appear biconcave due to
inflated central region. The apices of the valves have a
rounded end. Raphe runs mainly on the valve mantle and
at the poles and it is curved slightly over the face of the
valve at the apices. Terminal nodes are clearly distinctive.
Rectangular frustules in girdle view.

Habitat and distribution.—This taxon is not very well represented
in this region, it was found only in six sites with low abundance. Often
in circumneutral to weakly acidic, low conductivity waters (Patrick &
Reimer 1966).

Note.—This variety of *Eunotia pectinalis* has many, slight undulations
along the dorsal margin and a central swelling to the ventral margin.
These characters are used to distinguish the variety *Eunotia pectinalis* var.
undulata from its nominate variety (Patrick & Reimer 1966; Krammer &

Valves 20–100 × 4–15 μm. Striae at mid-valve 6–13 in
10 μm, irregularly and distantly spaced, and slightly more
dense at valve ends, parallel, becoming strongly radiate at
valve apices. Valves of *Eunotia praerupta* can usually be strongly curved with clearly protracted, broadly rostrate or abruptly terminated ends. The dorsal margin is convex; narrowed, and the ends are truncate-rostrate. The terminal nodules are distinct, at the ends of the valve, extending upwards along the apices. The frustules in the girdle view are rectangular.

Habitat and distribution.—Usually in mountainous localities in acid
circumneutral waters (Patrick & Reimer 1966). Acidophilus: mainly occurring
at pH < 7 (Van Damm & al. 1994).

Note.—This species can be easily recognized by the convexity of the
dorsal margin and by the characteristic truncate-rostrate to slightly
capitate ends.

10. *Eunotia subarcuatoides* Alles, Norpel & Lange-Bert, Nova Hedwigia 53: 188, pl. 4 figs. 1–36 (1991). Fig. 3n.

Valves 6–35(40) × 2.7–4.5 μm, curved dorsiventrally and
symmetric to the transapical axis. Dorsal margin
consistently strongly convex, smooth, rarely linear. Ventral
valve margin consistently weakly concave. Valve slightly
narrowed towards the end. Apices rounded to slightly (sub–)
rostrate. Striae 18–23 in 10 μm, extending across the entire
valve face. Raphe slightly developed mainly on the valve
mantle and restricted to the poles. Terminal nodules small,
dot-like, positioned slightly distant from both valve apices.
and ventral valve margin. Frustules box-like or rectangular in girdle view. Raphe often only visible in girdle view.

Habitat and distribution.—It is a common diatom in Galicia rivers occurring in high abundance. Its highest abundance was at pH 6.1. *Eunotia subarcuatoidea* has been classified as an acidobiontic with an optimal occurrence at pH < 5.5 (Van Dam & al. 1994). Anyway, it seems to tolerate high and strong variations of pH values (Alles & al. 1991; Ortiz-Leiria & Cambra 2007).

Valves 28–105 × 10–18 μm, generally rhomboid in shape, although valves at the small end of the size range are not strongly rhomboid. Striae 29–32/10 μm, parallel in the middle to gradually strongly convergent to the end, radiate at the apices; longitudinal striae are slightly constricted and narrowly rounded. The longitudinal ribs are slightly curved. Both the thickness of the ribs and size of the central nodule are variable in relation to valve size. The porte-crayon is relatively small.

Habitat and distribution.—This is a characteristic species from dystrophic and low-electrolyte waters. Indicator of high ecological quality.

Note.—*Frustulia crassinervia* (Bréb.) Lange-Bert. & Krammer has prominently undulate valve margins, while the margins of *Frustulia inculta* P.Siver, J.Pelczar & P.Ham. are very slightly undulate. In addition, the valve margins of *Frustulia crassinervia* are more strongly undulate and its apices more narrowly protracted than those in *Frustulia saxonica*.

Valves 6–14 × 4–5 μm, elliptical in the smaller specimens and linear in the larger, and centrally inflated. Striae 24–30 in 10 μm. Flat valves with large sternum raphe, and two rows of elongated areolae that are only visible in LM. A longitudinal row of areolae runs over the mantle along the margin of the valve, interrupted at the ends.

Habitat and distribution.—*Humidophila perpusilla* is a widespread diatom common in silicate dominated waters in highlands. It has also been cited from aerial habitats and often occurring in association with *Diadesmis contenta* (Grunow) D.G.Mann. Characteristic are also habitats with reduced light intensity such as caves and rock crevices. The freshwater genus *Humidophila* Lowe & al. is typically restricted to subaerial habitats (Round & al. 1990). In our study, *Humidophila perpusilla* was found in poor electrolyte, circumneutral and oligotrophic waters.

Note.—The complex of species around *Diadesmis contenta* s.l. was reviewed in part by Moser & al. (1998). Lowe & al. (2014) proposed the genus *Humidophila* to accommodate a number of taxa formerly classified within the subgenus *Paradiadesmis* Lange-Bert. & Le Cohan. Based on valve morphology analyses with scanning electron microscopy and microhabitat preferences, *Diadesmis perpusilla* was transferred to *Humidophila*. Our specimens most closely resemble *Humidophila perpusilla* as illustrated in Krammer & Lange-Bertalot (1986) as *Navicula gallica* var. *perpusilla*.

Valves 12–26 × 4.5–5.5 μm. Striae 16–23 in 10 μm, parallel in the central part, soon becoming moderately radial, becoming parallel again towards the apices. Raphe branches straight, filiform; central endings only very slightly bent; proximal raphe ends relatively close to each other, and only very slightly bent in the same direction which is opposite to that one towards which the terminal fissures are curved. Faint longitudinal lines visible on both sides of the raphe. Axial area narrow and straight, slightly widening towards the central area that is just a small unilateral expansion of the axial area.

Habitat and distribution.—The type locality —Soutomaior, at the River Verdugo— is a low altitude —140 m a.s.l.— stream stretch located in a narrow valley with steep slopes. The river bed is dominated with reduced light intensity such as caves and rock crevices. The freshwater genus *Humidophila* is typical of low-conductivity, meso-eutrophic, slightly-acidic but non-acidified, running-water sites, that reaches maximum relative abundances in autumn.

Note.—The most similar *Navicula* s.l. species are *Navicula natchikae* J.B.Petersen and *Navicula oregonensis* Hustedt. Both are clearly larger, and have parallel straight margins. Striae are interrupted close to the valve margin by a longitudinal rib developing parallel to the valve margin.

Valves 50–126 × 12–22 μm, linear, lanceolate, linear-elliptical, sides parallel, slightly convex or trundulate, ends broadly rounded or broadly rostrate to subcapitate. Raphe lateral, outer fissure somewhat curved, commonly filiform in the middle, central pores with lateral annexes, terminal fissures broadly bayonet-shaped. Axial area linear or linear-lanceolate and rhombic to rounded-elliptic.
central area extending to a small fascia that reaches the valve margin. Striae 9–14 in 10 μm, moderately to strongly radiate in the middle, moderately to strongly convergent at the ends, longitudinal bands absent, the alveoli completely open to the inside. Two conical spots which appears dark in the light microscope, each one at the edges of the central area which correspond to wall thickenings.

Habitat and distribution.—*Pinnularia divergens* was found at five study sites: the Ouro, Sor, Eume, Traba, and Sar rivers. All of the sites are oligotrophic waters from mountainous areas with a pH below 7 and low-electrolyte content.

Note.—At least eleven varieties exist in the literature, though some of these merely represent life-cycle stages. Striae divergence criterion, bayonet-shaped terminal fissures, and conical spots in the small fascia are important characters (Krammer 2000).

15. *Pinnularia sinistra* Krammer, Biblioth. Diatomol. 26: 175, pl. 37 fig. 1–16 (1992). Fig. 6i.

Valves 17–52 × 4–6.5 μm. Striae (11)13(14) in 10 μm. The central area consists of a moderately broad, often asymmetric, fascia. The specimens have valve ends broadly protracted and subprostrate nearly as wide as the valve.

Habitat and distribution.—Specimens were found at the Furelos river. The Furelos river is a tributary of the Ulla on its right bank. The river is located in the southeast corner of the province of A Coruña—belonging to Terra de Melide—, almost in the center of Galicia, and it flows through ultramafic rocks—the largest outcrop in the Iberian northwest. The site is located at medium altitude—700 m a.s.l. — at 25 km from the source with an upstream drainage area of 150 km². *Pinnularia sinistra* was found when the stream was at high flow condition. *Pinnularia sinistra* is cosmopolitan in the palaeartic region. Very common and locally abundant in oligotrophic electrolyte-poor, acidic streams. Tolerant to anthropogenic acidification (Hoffmann & al. 2011).

16. *Pinnularia stidolphii* Krammer, Diatoms 1: 231, pl. 134 figs. 1–7, pl. 183 fig. 3 (2000). Fig. 6p.

Valves 82–133 × 18–20 μm, linear, with sides almost parallel to slightly convex. Striae 7–9 in 10 μm, radiate in the centre zone, becoming slightly convergent close to the poles, and crossed by a small longitudinal strip. Apex broadly rounded and slightly narrowed. Longitudinal area is linear and moderately wide. Central area is asymmetric and rounded, often reduced or absent on one side. Raphe strongly undulated with central pores small, round and close standing.

Habitat and distribution.—*Pinnularia stidolphii* was found in Traba and Ulla rivers. The Traba river is situated in a landscape dominated by granitic rocks. The study site was located at low altitude—18 m a.s.l. —at 14 km from the river source and a catchment area of 6.5 km². The Ulla river runs through granites in contact with schists and basic rocks. The study site is also situated at low altitude—64 m a.s.l. —96 km downstream of its source. Industrial activities and urban development are the main impacts, respectively. Probably abundant species in temperate regions of North and South Hemisphere, in waters poor in organic matter.

17. *Planothidium daui* (Foged) Lange-Bert., Iconogr. Diatomol. 6: 275 (1999); *Achnanthes daui* Foged, Danmark Geol. Undersog. 84: 14, pl. 1 fig. 10 (1962);

Achnantheiopsis daui (Foged) Lange-Bert., Arch. Protistenk. 148: 206 (1997). Fig. 4e.

Valves 7–12 × 3.8–6 μm, elliptical or widely lanceolate in outline with clearly capitated ends. Striae 14–16 in 10 μm. The raphe valve has a narrow linear or lanceolate axial area generally with a distinct central area. Striae are strongly radiate on all sides, with striae at the centre more clearly shorter than the others. The rapheless valve is similar, but the striae are nearly parallel in the centre of the valve, changing to radiate near the poles.

Habitat and distribution.—The habitat is not clearly defined as a result of the problematic distinction from *Planothidium granum* (M.H.Hohn & Hellerman) Lange-Bert. Uncommon in Galicia rivers and streams, relatively abundant (> 5%) at one study site, poor in organic content at pH close to neutral, with a rather low mineralization.

Note.—Often confused with *Planothidium granum*, but *Planothidium daui* has clearly beak-like to capitate apices and more linear valve edges.

Valves 30–100 × 3.5–9 μm, linear to linear-lanceolate with generally convex or parallel sides. Striae 18–27 in 10 μm, clearly visible, interrupted in the middle by a narrow hyaline area. Frustules weakly silicified with narrow-linear isopolar longitudinal axis. Apices strongly narrowed, stretched and bluntly rounded. Easily distinguished of other related taxa by their sigmoid outline.

Habitat and distribution.—Cosmopolitan species but rare. Mostly observed sporadically in oligotrophic and dystrophic acids waters of siliceous mountain regions, well-oxygenated and low in organic matter and nutrients. Indicator of high ecological quality.

Note.—Based on phylogenetic analyses along with morphological studies Ruck & al. (2016) have recently reclassified the *Surirellales* and proposed the transfer of *Surirella delicatissima* into a new monotypic genus, *Iconella* Jurilj.

19. *Iconella linearis* (W.Sm.) Ruck & Nakov, Notul. Alg. 10: 2 (2016); *Surirella linearis* W.Sm., Syn. Brit. Diat. 1: 31, pl. 8, fig. 58 (1853); *Suriraya linearis* (W.Sm.) Pfitzer, Bot. Abh. (Bonn) 1(2): 112 (1871). Fig. 11j.

Valves 20–120 × 9–25 μm, bilaterally symmetrical, isopolar, generally linear-lanceolate, lanceolate or even elliptical with cuneate or rounded poles; alar wings 2–3 in 10 μm. Striae 20–22 in 10 μm fine and parallel at the center, becoming radiate ends, visible but not distinct. Pseudoraphe narrow and straight. The most obvious features of the valve are the corrugations of the surface associated with the formation of windows beneath the raphe system which give the valve a semblence of a series of transverse tubes opening under the raphe.

Habitat and distribution.—Iconella linearis is considered a cosmopolitan species, common in slightly acidic to neutral pH, weakly to moderately mineralized and moderately impacted by organic matter and nutrients.

Note.—Also transferred into genus Iconella by Ruck & al. (2016). Very similar to Surtellia roba Leclercq but Iconella linearis has a larger size and coarser structure, with more distantly spaced fibulae and corrugations.

ACKNOWLEDGEMENTS

The financial support for this work has been provided by Augas de Galicia (Xunta de Galicia) through a contract with the University of Santiago de Compostela for the assessment of the stream water quality in rivers of Galicia-Costa using diatom metrics (2005–2007). We are indebted to Juan Manuel Antelo Cortizas (Department of Quimica-Fisica) and Teresa Garcia Bernadal (researcher of Santiago de Compostela University) for their assistance during fieldwork and insightful comments on stream chemistry and ecology. Special thanks are to Maria Penalta for the photomicrographs in this study. We also thank the reviewers for their very helpful and constructive comments. Finally, we also would like to acknowledge Dr. Alejandro Quintanar for the corrections and improvements made to the original manuscript.

REFERENCES

